Displaying 141 – 160 of 402

Showing per page

Inégalités pour l’opérateur intégral fractionnaire sur différents espaces métriques mesurés

David Mascré (2011)

Annales mathématiques Blaise Pascal

Le but de cet article est d’étendre les résultats classiques (inégalité de Hardy-Littlewood-Sobolev, inégalité de Hedberg) sur l’intégrale fractionnaire à deux types différents d’espaces métriques mesurés : les espaces métriques mesurés à mesure doublante d’une part, les espaces métriques mesurés à croissance polynomiale du volume d’autre part. Les deux résultats principaux que nous obtenons sont les suivants :Etant donné ( X , ρ , μ ) un espace métrique mesuré de type homogène, étant donnés p , q , α R tels que 1 p < 1 / α , 1 / q = 1 / p - α ,...

Integral inequalities involving generalized Erdélyi-Kober fractional integral operators

Dumitru Baleanu, Sunil Dutt Purohit, Jyotindra C. Prajapati (2016)

Open Mathematics

Using the generalized Erdélyi-Kober fractional integrals, an attempt is made to establish certain new fractional integral inequalities, related to the weighted version of the Chebyshev functional. The results given earlier by Purohit and Raina (2013) and Dahmani et al. (2011) are special cases of results obtained in present paper.

Integral operators and weighted amalgams

C. Carton-Lebrun, H. Heinig, S. Hofmann (1994)

Studia Mathematica

For large classes of indices, we characterize the weights u, v for which the Hardy operator is bounded from q ̅ ( L v p ̅ ) into q ( L u p ) . For more general operators of Hardy type, norm inequalities are proved which extend to weighted amalgams known estimates in weighted L p -spaces. Amalgams of the form q ( L w p ) , 1 < p,q < ∞ , q ≠ p, w A p , are also considered and sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator and local maximal operator in these spaces are obtained.

Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry.

Franck Barthe, Patrick Cattiaux, Cyril Roberto (2006)

Revista Matemática Iberoamericana

We introduce and study a notion of Orlicz hypercontractive semigroups. We analyze their relations with general F-Sobolev inequalities, thus extending Gross hypercontractivity theory. We provide criteria for these Sobolev type inequalities and for related properties. In particular, we implement in the context of probability measures the ideas of Maz'ja's capacity theory, and present equivalent forms relating the capacity of sets to their measure. Orlicz hypercontractivity efficiently describes the...

Korn's First Inequality with variable coefficients and its generalization

Waldemar Pompe (2003)

Commentationes Mathematicae Universitatis Carolinae

If Ω n is a bounded domain with Lipschitz boundary Ω and Γ is an open subset of Ω , we prove that the following inequality Ω | A ( x ) u ( x ) | p d x 1 / p + Γ | u ( x ) | p d n - 1 ( x ) 1 / p c u W 1 , p ( Ω ) holds for all u W 1 , p ( Ω ; m ) and 1 < p < , where ( A ( x ) u ( x ) ) k = i = 1 m j = 1 n a k i j ( x ) u i x j ( x ) ( k = 1 , 2 , ... , r ; r m ) defines an elliptic differential operator of first order with continuous coefficients on Ω ¯ . As a special case we obtain Ω u ( x ) F ( x ) + ( u ( x ) F ( x ) ) T p d x c Ω | u ( x ) | p d x , ( * ) for all u W 1 , p ( Ω ; n ) vanishing on Γ , where F : Ω ¯ M n × n ( ) is a continuous mapping with det F ( x ) μ > 0 . Next we show that ( * ) is not valid if n 3 , F L ( Ω ) and det F ( x ) = 1 , but does hold if p = 2 , Γ = Ω and F ( x ) is symmetric and positive definite in Ω .

L p inequalities for the growth of polynomials with restricted zeros

Nisar A. Rather, Suhail Gulzar, Aijaz A. Bhat (2022)

Archivum Mathematicum

Let P ( z ) = ν = 0 n a ν z ν be a polynomial of degree at most n which does not vanish in the disk | z | < 1 , then for 1 p < and R > 1 , Boas and Rahman proved P ( R z ) p ( R n + z p / 1 + z p ) P p . In this paper, we improve the above inequality for 0 p < by involving some of the coefficients of the polynomial P ( z ) . Analogous result for the class of polynomials P ( z ) having no zero in | z | > 1 is also given.

Currently displaying 141 – 160 of 402