Displaying 41 – 60 of 77

Showing per page

On gradients of functions definable in o-minimal structures

Krzysztof Kurdyka (1998)

Annales de l'institut Fourier

We prove the o-minimal generalization of the Łojasiewicz inequality grad f | f | α , with α < 1 , in a neighborhood of a , where f is real analytic at a and f ( a ) = 0 . We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.

On nuclear maps between spaces of ultradiferentiables jets of Roumieu type.

Jean Schmets, Manuel Valdivia (2003)

RACSAM

Si K es un compacto no vacío en Rr, damos una condición suficiente para que la inyección canónica de ε{M},b(K) en ε{M},d(K) sea nuclear. Consideramos el caso mixto y obtenemos la existencia de un operador de extensión nuclear de ε{M1}(F)A en ε{M2}(Rr)D donde F es un subconjunto cerrado propio de Rr y A y D son discos de Banach adecuados. Finalmente aplicamos este último resultado al caso Borel, es decir cuando F = {0}.

On some noetherian rings of C germs on a real closed field

Abdelhafed Elkhadiri (2011)

Annales Polonici Mathematici

Let R be a real closed field, and denote by R , n the ring of germs, at the origin of Rⁿ, of C functions in a neighborhood of 0 ∈ Rⁿ. For each n ∈ ℕ, we construct a quasianalytic subring R , n R , n with some natural properties. We prove that, for each n ∈ ℕ, R , n is a noetherian ring and if R = ℝ (the field of real numbers), then , n = , where ₙ is the ring of germs, at the origin of ℝⁿ, of real analytic functions. Finally, we prove the Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring R , n .

On the approximation of real continuous functions by series of solutions of a single system of partial differential equations

Carsten Elsner (2006)

Colloquium Mathematicae

We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function f : s can be approximated with arbitrary accuracy by an infinite sum r = 1 H r ( x , . . . , x s ) C ( s ) of analytic functions H r , each solving the same system of universal partial differential equations, namely P ( x σ ; H r , H r / x σ , . . . , H r / x σ ) = 0 (σ = 1,..., s).

On the Euler characteristic of the links of a set determined by smooth definable functions

Krzysztof Jan Nowak (2008)

Annales Polonici Mathematici

The purpose of this paper is to carry over to the o-minimal settings some results about the Euler characteristic of algebraic and analytic sets. Consider a polynomially bounded o-minimal structure on the field ℝ of reals. A ( C ) smooth definable function φ: U → ℝ on an open set U in ℝⁿ determines two closed subsets W := u ∈ U: φ(u) ≤ 0, Z := u ∈ U: φ(u) = 0. We shall investigate the links of the sets W and Z at the points u ∈ U, which are well defined up to a definable homeomorphism. It is proven...

Preparation theorems for matrix valued functions

Nils Dencker (1993)

Annales de l'institut Fourier

We generalize the Malgrange preparation theorem to matrix valued functions F ( t , x ) C ( R × R n ) satisfying the condition that t det F ( t , 0 ) vanishes to finite order at t = 0 . Then we can factor F ( t , x ) = C ( t , x ) P ( t , x ) near (0,0), where C ( t , x ) C is inversible and P ( t , x ) is polynomial function of t depending C on x . The preparation is (essentially) unique, up to functions vanishing to infinite order at x = 0 , if we impose some additional conditions on P ( t , x ) . We also have a generalization of the division theorem, and analytic versions generalizing the Weierstrass preparation...

Principe de la phase résonnante

Jacques Vey (1979)

Annales de l'institut Fourier

On donne une variante du principe de la phase stationnaire, où l’intégrale est remplacée par une sommation sur le réseau cubique de maille égale à l’unité de phase.

Quantifier elimination in quasianalytic structures via non-standard analysis

Krzysztof Jan Nowak (2015)

Annales Polonici Mathematici

The paper is a continuation of an earlier one where we developed a theory of active and non-active infinitesimals and intended to establish quantifier elimination in quasianalytic structures. That article, however, did not attain full generality, which refers to one of its results, namely the theorem on an active infinitesimal, playing an essential role in our non-standard analysis. The general case was covered in our subsequent preprint, which constitutes a basis for the approach presented here....

Quantifier elimination, valuation property and preparation theorem in quasianalytic geometry via transformation to normal crossings

Krzysztof Jan Nowak (2009)

Annales Polonici Mathematici

This paper investigates the geometry of the expansion Q of the real field ℝ by restricted quasianalytic functions. The main purpose is to establish quantifier elimination, description of definable functions by terms, the valuation property and preparation theorem (in the sense of Parusiński-Lion-Rolin). To this end, we study non-standard models of the universal diagram T of Q in the language ℒ augmented by the names of rational powers. Our approach makes no appeal to the Weierstrass preparation...

Racines de fonctions différentiables

Pierre Lengyel (1975)

Annales de l'institut Fourier

Nous précisons la classe de différentiabilité de f α f désigne une fonction positive de classe C p , p -plate sur l’ensemble de ses zéros, et α un réel, 0 < α < 1  ; de plus, nous étudions l’existence locale d’une racine p -ième de classe C , pour une fonction de classe C admettant une racine p -ième formelle en chaque point.

Solutions d'un système d'équations analytiques réelles et applications

Jean-Claude Tougeron (1976)

Annales de l'institut Fourier

On démontre que toute solution formelle y ( x ) d’un système d’équations analytiques réelles (resp. polynomiales réelles) f ( x , y ) = 0 , se relève en une solution C homotope à une solution analytique (resp. à une solution de Nash) aussi proche que l’on veut de y ( x ) pour la topologie de Krull. On utilise ce théorème pour démontrer l’algébricité (ou l’analyticité) de certains idéaux de R { x } (ou R [ [ x ] ] ), et aussi pour construire des déformations analytiques de germes d’ensembles analytiques en germes d’ensembles de Nash.

Some classes of infinitely differentiable functions

G. S. Balashova (1999)

Mathematica Bohemica

For nonquasianalytical Carleman classes conditions on the sequences { M ^ n } and { M n } are investigated which guarantee the existence of a function in C J { M ^ n } such that u(n)(a) = bn,    bnKn+1Mn,    n = 0,1,...,    aJ. Conditions of coincidence of the sequences { M ^ n } and { M n } are analysed. Some still unknown classes of such sequences are pointed out and a construction of the required function is suggested. The connection of this classical problem with the problem of the existence of a function with given trace at the boundary...

Supplement to the paper "Quasianalytic perturbation of multi-parameter hyperbolic polynomials and symmetric matrices" (Ann. Polon. Math. 101 (2011), 275-291)

Krzysztof Jan Nowak (2012)

Annales Polonici Mathematici

In IMUJ Preprint 2009/05 we investigated the quasianalytic perturbation of hyperbolic polynomials and symmetric matrices by applying our quasianalytic version of the Abhyankar-Jung theorem from IMUJ Preprint 2009/02, whose proof relied on a theorem by Luengo on ν-quasiordinary polynomials. But those papers of ours were suspended after we had become aware that Luengo's paper contained an essential gap. This gave rise to our subsequent article on quasianalytic perturbation theory, which developed,...

Currently displaying 41 – 60 of 77