Displaying 21 – 40 of 145

Showing per page

Infinite ergodic index d -actions in infinite measure

E. Muehlegger, A. Raich, C. Silva, M. Touloumtzis, B. Narasimhan, W. Zhao (1999)

Colloquium Mathematicae

We construct infinite measure preserving and nonsingular rank one d -actions. The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite and infinite measure which are properly exhaustive and weakly wandering. The next examples are staircase rank one infinite measure preserving d -actions; for these we show that the individual basis transformations have conservative ergodic Cartesian...

Infinite Iterated Function Systems: A Multivalued Approach

K. Leśniak (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove that a compact family of bounded condensing multifunctions has bounded condensing set-theoretic union. Compactness is understood in the sense of the Chebyshev uniform semimetric induced by the Hausdorff distance and condensity is taken w.r.t. the Hausdorff measure of noncompactness. As a tool, we present an estimate for the measure of an infinite union. Then we apply our result to infinite iterated function systems.

Infinitely divisible cylindrical measures on Banach spaces

Markus Riedle (2011)

Studia Mathematica

In this work infinitely divisible cylindrical probability measures on arbitrary Banach spaces are introduced. The class of infinitely divisible cylindrical probability measures is described in terms of their characteristics, a characterisation which is not known in general for infinitely divisible Radon measures on Banach spaces. Further properties of infinitely divisible cylindrical measures such as continuity are derived. Moreover, the classification result enables us to deduce new results on...

Information measures and uncertainty of particular symbols

Milan Mareš (2011)

Kybernetika

The measurement of information emitted by sources with uncertainty of random type is known and investigated in many works. This paper aims to contribute to analogous treatment of information connected with messages from other uncertain sources, influenced by not only random but also some other types of uncertainty, namely with imprecision and vagueness. The main sections are devoted to the characterization and quantitative representation of such uncertainties and measures of information produced...

Inhomogeneous self-similar sets and box dimensions

Jonathan M. Fraser (2012)

Studia Mathematica

We investigate the box dimensions of inhomogeneous self-similar sets. Firstly, we extend some results of Olsen and Snigireva by computing the upper box dimensions assuming some mild separation conditions. Secondly, we investigate the more difficult problem of computing the lower box dimension. We give some non-trivial bounds and provide examples to show that lower box dimension behaves much more strangely than upper box dimension, Hausdorff dimension and packing dimension.

Injections de Sobolev probabilistes et applications

Nicolas Burq, Gilles Lebeau (2013)

Annales scientifiques de l'École Normale Supérieure

On démontre dans cet article des versions probabilistes des injections de Sobolev sur une variété riemannienne compacte, ( M , g ) . Plus précisément on démontre que pour des mesures de probabilité naturelles sur l’espace L 2 ( M ) , presque toute fonction appartient à tous les espaces L p ( M ) , p < + . On donne ensuite des applications à l’étude des harmoniques sphériques sur la sphère 𝕊 d  : on démontre (encore pour des mesures de probabilité naturelles) que presque toute base hilbertienne de L 2 ( 𝕊 d ) formée d’harmoniques sphériques...

Inscribing compact non-σ-porous sets into analytic non-σ-porous sets

Miroslav Zelený, Luděk Zajíček (2005)

Fundamenta Mathematicae

The main aim of this paper is to give a simpler proof of the following assertion. Let A be an analytic non-σ-porous subset of a locally compact metric space, E. Then there exists a compact non-σ-porous subset of A. Moreover, we prove the above assertion also for σ-P-porous sets, where P is a porosity-like relation on E satisfying some additional conditions. Our result covers σ-⟨g⟩-porous sets, σ-porous sets, and σ-symmetrically porous sets.

Inserting measurable functions precisely

Javier Gutiérrez García, Tomasz Kubiak (2014)

Czechoslovak Mathematical Journal

A family of subsets of a set is called a σ -topology if it is closed under arbitrary countable unions and arbitrary finite intersections. A σ -topology is perfect if any its member (open set) is a countable union of complements of open sets. In this paper perfect σ -topologies are characterized in terms of inserting lower and upper measurable functions. This improves upon and extends a similar result concerning perfect topologies. Combining this characterization with a σ -topological version of Katětov-Tong...

Integrable system of the heat kernel associated with logarithmic potentials

Kazuhiko Aomoto (2000)

Annales Polonici Mathematici

The heat kernel of a Sturm-Liouville operator with logarithmic potential can be described by using the Wiener integral associated with a real hyperplane arrangement. The heat kernel satisfies an infinite-dimensional analog of the Gauss-Manin connection (integrable system), generalizing a variational formula of Schläfli for the volume of a simplex in the space of constant curvature.

Currently displaying 21 – 40 of 145