Displaying 81 – 100 of 205

Showing per page

Hausdorff dimension of scale-sparse Weierstrass-type functions

Abel Carvalho (2011)

Fundamenta Mathematicae

The aim of this paper is to calculate (deterministically) the Hausdorff dimension of the scale-sparse Weierstrass-type functions W s ( x ) : = j 1 ρ - γ j s g ( ρ γ j x + θ j ) , where ρ > 1, γ > 1 and 0 < s < 1, and g is a periodic Lipschitz function satisfying some additional appropriate conditions.

Hausdorff dimension of the maximal run-length in dyadic expansion

Ruibiao Zou (2011)

Czechoslovak Mathematical Journal

For any x [ 0 , 1 ) , let x = [ ϵ 1 , ϵ 2 , , ] be its dyadic expansion. Call r n ( x ) : = max { j 1 : ϵ i + 1 = = ϵ i + j = 1 , 0 i n - j } the n -th maximal run-length function of x . P. Erdös and A. Rényi showed that lim n r n ( x ) / log 2 n = 1 almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than log 2 n , is quantified by their Hausdorff dimension.

Hausdorff measures and the Morse-Sard theorem.

Carlos Gustavo T. de A. Moreira (2001)

Publicacions Matemàtiques

Let F : U ⊂ Rn → Rm be a differentiable function and p &lt; m an integer. If k ≥ 1 is an integer, α ∈ [0, 1] and F ∈ Ck+(α), if we set Cp(F) = {x ∈ U | rank(Df(x)) ≤ p} then the Hausdorff measure of dimension (p + (n-p)/(k+α)) of F(Cp(F)) is zero.

Hausdorff measures and two point set extensions

Jan Dijkstra, Kenneth Kunen, Jan van Mill (1998)

Fundamenta Mathematicae

We investigate the following question: under which conditions is a σ-compact partial two point set contained in a two point set? We show that no reasonable measure or capacity (when applied to the set itself) can provide a sufficient condition for a compact partial two point set to be extendable to a two point set. On the other hand, we prove that under Martin's Axiom any σ-compact partial two point set such that its square has Hausdorff 1-measure zero is extendable.

Homogeneity and non-coincidence of Hausdorff and box dimensions for subsets of ℝⁿ

Anders Nilsson, Peter Wingren (2007)

Studia Mathematica

A class of subsets of ℝⁿ is constructed that have certain homogeneity and non-coincidence properties with respect to Hausdorff and box dimensions. For each triple (r,s,t) of numbers in the interval (0,n] with r < s < t, a compact set K is constructed so that for any non-empty subset U relatively open in K, we have ( d i m H ( U ) , d i m ̲ B ( U ) , d i m ¯ B ( U ) ) = ( r , s , t ) . Moreover, 2 - n H r ( K ) 2 n r / 2 .

KPZ formula for log-infinitely divisible multifractal random measures

Rémi Rhodes, Vincent Vargas (2011)

ESAIM: Probability and Statistics

We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [E. Bacry et al. Comm. Math. Phys. 236 (2003) 449–475]. If M is a non degenerate multifractal measure with associated metric ρ(x,y) = M([x,y]) and structure function ζ, we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimHρ with respect to ρ of the same set: ζ(dimHρ(K)) = dimH(K). Our results can...

KPZ formula for log-infinitely divisible multifractal random measures

Rémi Rhodes, Vincent Vargas (2012)

ESAIM: Probability and Statistics

We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [E. Bacry et al. Comm. Math. Phys.236 (2003) 449–475]. If M is a non degenerate multifractal measure with associated metric ρ(x,y) = M([x,y]) and structure function ζ, we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimHρ with respect to ρ of the same set: ζ(dimHρ(K)) = dimH(K). Our results can...

L q -spectrum of the Bernoulli convolution associated with the golden ratio

Ka-Sing Lau, Sze-Man Ngai (1998)

Studia Mathematica

Based on a set of higher order self-similar identities for the Bernoulli convolution measure for (√5-1)/2 given by Strichartz et al., we derive a formula for the L q -spectrum, q >0, of the measure. This formula is the first obtained in the case where the open set condition does not hold.

Large dimensional sets not containing a given angle

Viktor Harangi (2011)

Open Mathematics

We say that a set in a Euclidean space does not contain an angle α if the angle determined by any three points of the set is not equal to α. The goal of this paper is to construct compact sets of large Hausdorff dimension that do not contain a given angle α ∈ (0,π). We will construct such sets in ℝn of Hausdorff dimension c(α)n with a positive c(α) depending only on α provided that α is different from π/3, π/2 and 2π/3. This improves on an earlier construction (due to several authors) that has dimension...

Linear distortion of Hausdorff dimension and Cantor's function.

Oleksiy Dovgoshey, Vladimir Ryazanov, Olli Martio, Matti Vuorinen (2006)

Collectanea Mathematica

Let be a mapping from a metric space X to a metric space Y, and let α be a positive real number. Write dim (E) and Hs(E) for the Hausdorff dimension and the s-dimensional Hausdorff measure of a set E. We give sufficient conditions that the equality dim (f(E)) = αdim (E) holds for each E ⊆ X. The problem is studied also for the Cantor ternary function G. It is shown that there is a subset M of the Cantor ternary set such that Hs(M) = 1, with s = log2/log3 and dim(G(E)) = (log3/log2) dim (E), for...

Currently displaying 81 – 100 of 205