Displaying 301 – 320 of 2105

Showing per page

Au bord de certains polyèdres hyperboliques

Marc Bourdon (1995)

Annales de l'institut Fourier

Le cadre de cet article est celui des groupes et des espaces hyperboliques de M.  Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...

Automate des préfixes-suffixes associé à une substitution primitive

Vincent Canterini, Anne Siegel (2001)

Journal de théorie des nombres de Bordeaux

On explicite une conjugaison en mesure entre le décalage sur le système dynamique associé à une substitution primitive et une transformation adique sur le support d'un sous-shift de type fini, à savoir l'ensemble des chemins d'un automate dit des préfixes-suffixes. En caractérisant les préimages par la conjugaison des chemins périodiques de l'automate, on montre que cette conjugaison est injective sauf sur un ensemble dénombrable, sur lequel elle est finie-à-un. On en déduit l'existence d'une suite...

B V spaces and rectifiability for Carnot-Carathéodory metrics: an introduction

Franchi, Bruno (2003)

Nonlinear Analysis, Function Spaces and Applications

This paper is meant as a (short and partial) introduction to the study of the geometry of Carnot groups and, more generally, of Carnot-Carathéodory spaces associated with a family of Lipschitz continuous vector fields. My personal interest in this field goes back to a series of joint papers with E. Lanconelli, where this notion was exploited for the study of pointwise regularity of weak solutions to degenerate elliptic partial differential equations. As stated in the title, here we are mainly concerned...

Baire category results for quasi–copulas

Fabrizio Durante, Juan Fernández-Sánchez, Wolfgang Trutschnig (2016)

Dependence Modeling

The aim of this manuscript is to determine the relative size of several functions (copulas, quasi– copulas) that are commonly used in stochastic modeling. It is shown that the class of all quasi–copulas that are (locally) associated to a doubly stochastic signed measure is a set of first category in the class of all quasi– copulas. Moreover, it is proved that copulas are nowhere dense in the class of quasi-copulas. The results are obtained via a checkerboard approximation of quasi–copulas.

Base-base paracompactness and subsets of the Sorgenfrey line

Strashimir G. Popvassilev (2012)

Mathematica Bohemica

A topological space X is called base-base paracompact (John E. Porter) if it has an open base such that every base ' has a locally finite subcover 𝒞 ' . It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.

Benoit Mandelbrot a fraktální geometrie

(1988)

Pokroky matematiky, fyziky a astronomie

Obsahuje tyto části: 1. Benoit Mandelbrot vyznamenán za velký vědecký čin. 2. J. W. Cannon: recenze knihy B. B. Mandelbrota „Fraktální geometrie přírody‟. 3. David Preiss: Něco málo matematiky k fraktálúm.

Bernoulli sequences and Borel measurability in ( 0 , 1 )

Petr Veselý (1993)

Commentationes Mathematicae Universitatis Carolinae

The necessary and sufficient condition for a function f : ( 0 , 1 ) [ 0 , 1 ] to be Borel measurable (given by Theorem stated below) provides a technique to prove (in Corollary 2) the existence of a Borel measurable map H : { 0 , 1 } { 0 , 1 } such that ( H ( X p ) ) = ( X 1 / 2 ) holds for each p ( 0 , 1 ) , where X p = ( X 1 p , X 2 p , ... ) denotes Bernoulli sequence of random variables with P [ X i p = 1 ] = p .

Bernstein sets with algebraic properties

Marcin Kysiak (2009)

Open Mathematics

We construct Bernstein sets in ℝ having some additional algebraic properties. In particular, solving a problem of Kraszewski, Rałowski, Szczepaniak and Żeberski, we construct a Bernstein set which is a < c-covering and improve some other results of Rałowski, Szczepaniak and Żeberski on nonmeasurable sets.

Besicovitch subsets of self-similar sets

Ji-Hua Ma, Zhi-Ying Wen, Jun Wu (2002)

Annales de l’institut Fourier

Let E be a self-similar set with similarities ratio r j ( 0 j m - 1 ) and Hausdorff dimension s , let p ( p 0 , p 1 ) ... p m - 1 be a probability vector. The Besicovitch-type subset of E is defined as E ( p ) = x E : lim n 1 n k = 1 n χ j ( x k ) = p j , 0 j m - 1 , where χ j is the indicator function of the set { j } . Let α = dim H ( E ( p ) ) = dim P ( E ( p ) ) = j = 0 m - 1 p j log p j j = 0 m - 1 p i log r j and g be a gauge function, then we prove in this paper:(i) If p = ( r 0 s , r 1 s , , r m - 1 s ) , then s ( E ( p ) ) = s ( E ) , 𝒫 s ( E ( p ) ) = 𝒫 s ( E ) , moreover both of s ( E ) and 𝒫 s ( E ) are finite positive;(ii) If p is a positive probability vector other than ( r 0 s , r 1 s , , r m - 1 s ) , then the gauge functions can be partitioned as follows g ( E ( p ) ) = + lim ¯ t 0 log g ( t ) log t α ; g ( E ( p ) ) = 0 lim ¯ t 0 log g ( t ) log t &gt; α , ...

Besicovitch via Baire

T. W. Körner (2003)

Studia Mathematica

We construct various Besicovitch sets using Baire category arguments.

Currently displaying 301 – 320 of 2105