Completeness of spaces over finitely additive probabilities
Nous donnons, pour chaque niveau de complexité Γ, une caractérisation du type "test d'Hurewicz" des boréliens d'un produit de deux espaces polonais ayant toutes leurs coupes dénombrables ne pouvant pas être rendus Γ par changement des deux topologies polonaises.
We show that for every there is a set such that is a monotone measure, the corresponding tangent measures at the origin are non-conical and non-unique and has the -dimensional density between and everywhere in the support.
We prove that if and δ are the Hausdorff metric and the radial metric on the space ⁿ of star bodies in ℝ, with 0 in the kernel and with radial function positive and continuous, then a family ⊂ ⁿ that is meager with respect to need not be meager with respect to δ. Further, we show that both the family of fractal star bodies and its complement are dense in ⁿ with respect to δ.
We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism.
A new construction method for aggregation operators based on a composition of aggregation operators is proposed. Several general properties of this construction method are recalled. Further, several special cases are discussed. It is also shown, that this construction generalizes a recently introduced twofold integral, which is exactly a composition of the Choquet and Sugeno integral by means of a min operator.
We construct a set B and homeomorphism f where f and have property N such that the symmetric difference between the sets of density points and of f-density points of B is uncountable.
We show that the Hölder exponent and the chirp exponent of a function can be prescribed simultaneously on a set of full measure, if they are both lower limits of continuous functions. We also show that this result is optimal: In general, Hölder and chirp exponents cannot be prescribed outside a set of Hausdorff dimension less than one. The direct part of the proof consists in an explicit construction of a function determined by its orthonormal wavelet coefficients; the optimality is the direct consequence...