A method for evaluating the fractal dimension in the plane, using coverings with crosses
Various methods may be used to define the Minkowski-Bouligand dimension of a compact subset E in the plane. The best known is the box method. After introducing the notion of ε-connected set , we consider a new method based upon coverings of with crosses of diameter 2ε. To prove that this cross method gives the fractal dimension for all E, the main argument consists in constructing a special pavement of the complementary set with squares. This method gives rise to a dimension formula using integrals,...