A Monogenic Baire Measure Need Not Be Completion Regular
Kelley's Theorem is a purely combinatorial characterization of measure algebras. We first apply linear programming to exhibit the duality between measures and this characterization for finite algebras. Then we give a new proof of the Theorem using methods from nonstandard analysis.
It is shown that every monocompact submeasure on an orthomodular poset is order continuous. From this generalization of the classical Marczewski Theorem, several results of commutative Measure Theory are derived and unified.
We establish a Banach-Steinhaus type theorem for nonlinear functionals of several variables. As an application, we obtain extensions of the recent results of Balcerzak and Wachowicz on some meager subsets of L¹(μ) × L¹(μ) and c₀ × c₀. As another consequence, we get a Banach-Mazurkiewicz type theorem on some residual subset of C[0,1] involving Kharazishvili's notion of Φ-derivative.
We give a non-probabilistic proof of a theorem of Naor and Neiman that asserts that if (E, d) is a doubling metric space, there is an integer N > 0, depending only on the metric doubling constant, such that for each exponent α ∈ (1/2; 1), one can find a bilipschitz mapping F = (E; dα ) ⃗ ℝ RN.
Let be a locally compact space. A lifting of where is a positive measure on , is almost strong if for each bounded, continuous function , and coincide locally almost everywhere. We prove here that the set of all measures on such that there exists an almost strong lifting of is a band.
The present article studies the conditions under which the almost everywhere convergence and the convergence in measure coincide. An application in the statistical estimation theory is outlined as well.