Displaying 121 – 140 of 154

Showing per page

Sugli insiemi piccoli in un gruppo

Antonio Vitolo, Umberto Zannier (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Un insieme S in un gruppo G si dice piccolo se esistono infiniti traslati di S a due a due disgiunti. In questa nota dimostriamo in modo elementare che, sotto opportune ipotesi, G non può essere l'unione di un numero finito di insiemi piccoli (e una generalizzazione di questo risultato).

The type set for some measures on 2 n with n -dimensional support

E. Ferreyra, T. Godoy, Marta Urciuolo (2002)

Czechoslovak Mathematical Journal

Let ϕ 1 , , ϕ n be real homogeneous functions in C ( n - { 0 } ) of degree k 2 , let ϕ ( x ) = ( ϕ 1 ( x ) , , ϕ n ( x ) ) and let μ be the Borel measure on 2 n given by μ ( E ) = n χ E ( x , ϕ ( x ) ) | x | γ - n d x where d x denotes the Lebesgue measure on n and γ > 0 . Let T μ be the convolution operator T μ f ( x ) = ( μ * f ) ( x ) and let E μ = { ( 1 / p , 1 / q ) T μ p , q < , 1 p , q } . Assume that, for x 0 , the following two conditions hold: det ( d 2 ϕ ( x ) h ) vanishes only at h = 0 and det ( d ϕ ( x ) ) 0 . In this paper we show that if γ > n ( k + 1 ) / 3 then E μ is the empty set and if γ n ( k + 1 ) / 3 then E μ is the closed segment with endpoints D = 1 - γ n ( k + 1 ) , 1 - 2 γ n ( k + 1 ) and D ' = 2 γ n ( 1 + k ) , γ n ( 1 + k ) . Also, we give some examples.

The uniqueness of Haar measure and set theory

Piotr Zakrzewski (1997)

Colloquium Mathematicae

Let G be a group of homeomorphisms of a nondiscrete, locally compact, σ-compact topological space X and suppose that a Haar measure on X exists: a regular Borel measure μ, positive on nonempty open sets, finite on compact sets and invariant under the homeomorphisms from G. Under some mild assumptions on G and X we prove that the measure completion of μ is the unique, up to a constant factor, nonzero, σ-finite, G-invariant measure defined on its domain iff μ is ergodic and the G-orbits of all points...

Transport de mesure et courbures de Ricci synthétiques dans le groupe de Heisenberg

Nicolas Juillet (2006/2007)

Séminaire de théorie spectrale et géométrie

Dans ces notes il sera expliqué que la propriété M C P ( 0 , 5 ) est vérifiée par le groupe de Heisenberg 1 muni de la distance de Carnot-Carathéodory et de la mesure de Lebesgue. Cette propriété correspond pour les espaces métriques mesurés à une courbure de Ricci positive. Comme application, les mesures interpolées par transport de mesure sont absolument continues. En revanche, la courbure-dimension C D ( 0 , N ) , une autre courbure de Ricci synthétique adaptée aux espaces métriques mesurés est fausse pour 1 .

Currently displaying 121 – 140 of 154