Partial densities on the group of integers
Conditions are obtained under which a partial density on the group of integers with the discrete topology can be extended to a density.
Conditions are obtained under which a partial density on the group of integers with the discrete topology can be extended to a density.
Abstract. The existence theorem of an invariant measure and Poincare's Recurrence Theorem are extended to set-valued dynamical systems with closed graph on a compact metric space.
In 1967, Ross and Stromberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group G on (G,ρ), where ρ is the right Haar measure. We study the same kind of problem, but more generally for left actions of G on any measure space (X,μ), which leave the σ-finite measure μ relatively invariant, in the sense that sμ = Δ(s)μ for every s ∈ G, where Δ is the modular function of G. As a consequence, we also obtain a generalization of a theorem of Civin...
Suppose is an ordered locally convex space, and Hausdorff completely regular spaces and a uniformly bounded, convex and closed subset of . For , let . Then, under some topological and order conditions on , necessary and sufficient conditions are established for the existence of an element in , having marginals and .
Un théorème classique exprime qu’à partir d’un semi-groupe d’opérateurs sur l’espace des fonctions continues tendant vers 0 à l’infini, , , , continue, , on peut construire un processus markovien “standard”, à trajectoires réglées et continues à droite, quasi-continu à gauche ; l’espace des états est supposé localement compact à base dénombrable d’ouverts. Nous supposons ici que l’espace des états est seulement universellement mesurable dans un souslinien complètement régulier ; le processus...