Displaying 281 – 300 of 901

Showing per page

Estimates of capacity of self-similar measures

Jozef Myjak, Tomasz Szarek (2002)

Annales Polonici Mathematici

We give lower and upper estimates of the capacity of self-similar measures generated by iterated function systems ( S i , p i ) : i = 1 , . . . , N where S i are bi-lipschitzean transformations.

Existence of discrete ergodic singular transforms for admissible processes

Doğan Çömez (2008)

Colloquium Mathematicae

This article is concerned with the study of the discrete version of generalized ergodic Calderón-Zygmund singular operators. It is shown that such discrete ergodic singular operators for a class of superadditive processes, namely, bounded symmetric admissible processes relative to measure preserving transformations, are weak (1,1). From this maximal inequality, a.e. existence of the discrete ergodic singular transform is obtained for such superadditive processes. This generalizes the well-known...

Explicit construction of normal lattice configurations

Mordechay B. Levin, Meir Smorodinsky (2005)

Colloquium Mathematicae

We extend Champernowne’s construction of normal numbers to base b to the d case and obtain an explicit construction of a generic point of the d shift transformation of the set 0 , 1 , . . . , b - 1 d .

Extensions of probability-preserving systems by measurably-varying homogeneous spaces and applications

Tim Austin (2010)

Fundamenta Mathematicae

We study a generalized notion of a homogeneous skew-product extension of a probability-preserving system in which the homogeneous space fibres are allowed to vary over the ergodic decomposition of the base. The construction of such extensions rests on a simple notion of 'direct integral' for a 'measurable family' of homogeneous spaces, which has a number of precedents in older literature. The main contribution of the present paper is the systematic development of a formalism for handling such extensions,...

Factors of ergodic group extensions of rotations

Jan Kwiatkowski (1992)

Studia Mathematica

Diagonal metric subgroups of the metric centralizer C ( T φ ) of group extensions are investigated. Any diagonal compact subgroup Z of C ( T φ ) is determined by a compact subgroup Y of a given metric compact abelian group X, by a family v y : y Y , of group automorphisms and by a measurable function f:X → G (G a metric compact abelian group). The group Z consists of the triples ( y , F y , v y ) , y ∈ Y, where F y ( x ) = v y ( f ( x ) ) - f ( x + y ) , x ∈ X.

Faithful zero-dimensional principal extensions

Tomasz Downarowicz, Dawid Huczek (2012)

Studia Mathematica

We prove that every topological dynamical system (X,T) has a faithful zero-dimensional principal extension, i.e. a zero-dimensional extension (Y,S) such that for every S-invariant measure ν on Y the conditional entropy h(ν | X) is zero, and, in addition, every invariant measure on X has exactly one preimage on Y. This is a strengthening of the authors' result in Acta Appl. Math. [to appear] (where the extension was principal, but not necessarily faithful).

Finitarily Bernoulli factors are dense

Stephen Shea (2013)

Fundamenta Mathematicae

It is not known if every finitary factor of a Bernoulli scheme is finitarily isomorphic to a Bernoulli scheme (is finitarily Bernoulli). In this paper, for any Bernoulli scheme X, we define a metric on the finitary factor maps from X. We show that for any finitary map f: X → Y, there exists a sequence of finitary maps fₙ: X → Y(n) that converges to f, where each Y(n) is finitarily Bernoulli. Thus, the maps to finitarily Bernoulli factors are dense. Let (X(n)) be a sequence of Bernoulli schemes such...

Currently displaying 281 – 300 of 901