Minimal models for -actions
We prove that on a metrizable, compact, zero-dimensional space every -action with no periodic points is measurably isomorphic to a minimal -action with the same, i.e. affinely homeomorphic, simplex of measures.
We prove that on a metrizable, compact, zero-dimensional space every -action with no periodic points is measurably isomorphic to a minimal -action with the same, i.e. affinely homeomorphic, simplex of measures.
An effective construction of positive-entropy almost one-to-one topological extensions of the Chacón flow is given. These extensions have the property of almost minimal power joinings. For each possible value of entropy there are uncountably many pairwise non-conjugate such extensions.
We consider strictly stationary infinitely divisible processes and first extend the mixing conditions given in Maruyama [Theory Probab. Appl. 15 (1970) 1–22] and Rosiński and Żak [Stoc. Proc. Appl. 61 (1996) 277–288] from the univariate to the d-dimensional case. Thereafter, we show that multivariate Lévy-driven mixed moving average processes satisfy these conditions and hence a wide range of well-known processes such as superpositions of Ornstein − Uhlenbeck (supOU) processes or (fractionally integrated)...
We prove that mixing on rank-one transformations is equivalent to "the uniform convergence of ergodic averages (as in the mean ergodic theorem) over subsequences of partial sums". In particular, all polynomial staircase transformations are mixing.
We prove that for a certain class of shifts of finite type with positive topological entropy there is always an invariant measure, with entropy arbitrarily close to the topological entropy, that has strong metric mixing properties. With the additional assumption that there are dense periodic orbits, one can ensure that this measure is Bernoulli.
Let E be an interval in the unit interval [0,1). For each x ∈ [0,1) define dₙ(x) ∈ 0,1 by , where t is the fractional part of t. Then x is called a normal number mod 2 with respect to E if converges to 1/2. It is shown that for any interval E ≠(1/6, 5/6) a.e. x is a normal number mod 2 with respect to E. For E = (1/6, 5/6) it is proved that converges a.e. and the limit equals 1/3 or 2/3 depending on x.
In ergodic theory, certain sequences of averages may not converge almost everywhere for all f ∈ L¹(X), but a sufficiently rapidly growing subsequence of these averages will be well behaved for all f. The order of growth of this subsequence that is sufficient is often hyperexponential, but not necessarily so. For example, if the averages are , then the subsequence will not be pointwise good even on , but the subsequence will be pointwise good on L¹. Understanding when the hyperexponential...
In this article some properties of Markovian mean ergodic operators are studied. As an application of the tools developed, and using the admissibility feature, a “reduction of order” technique for multiparameter admissible superadditive processes is obtained. This technique is later utilized to obtain a.e. convergence of averages as well as their weighted version.