Displaying 641 – 660 of 901

Showing per page

Properties of Wiener-Wintner dynamical systems

I. Assani, K. Nicolaou (2001)

Bulletin de la Société Mathématique de France

In this paper we prove the following results. First, we show the existence of Wiener-Wintner dynamical system with continuous singular spectrum in the orthocomplement of their respective Kronecker factors. The second result states that if f L p , p large enough, is a Wiener-Wintner function then, for all γ ( 1 + 1 2 p - β 2 , 1 ] , there exists a set X f of full measure for which the series n = 1 f ( T n x ) e 2 π i n ϵ n γ converges uniformly with respect to ϵ .

Quelques remarques sur les facteurs des systèmes dynamiques gaussiens

A. Iwanik, M. Lemańczyk, T. de la Rue, J. de Sam Lazaro (1997)

Studia Mathematica

We study the factors of Gaussian dynamical systems which are generated by functions depending only on a finite number of coordinates. As an application, we show that for Gaussian automorphisms with simple spectrum, the partition ( X 0 0 ) , ( X 0 > 0 ) is generating.

Random orderings and unique ergodicity of automorphism groups

Omer Angel, Alexander S. Kechris, Russell Lyons (2014)

Journal of the European Mathematical Society

We show that the only random orderings of finite graphs that are invariant under isomorphism and induced subgraph are the uniform random orderings. We show how this implies the unique ergodicity of the automorphism group of the random graph. We give similar theorems for other structures, including, for example, metric spaces. These give the first examples of uniquely ergodic groups, other than compact groups and extremely amenable groups, after Glasner andWeiss’s example of the group of all permutations...

Range of density measures

Martin Sleziak, Miloš Ziman (2009)

Acta Mathematica Universitatis Ostraviensis

We investigate some properties of density measures – finitely additive measures on the set of natural numbers extending asymptotic density. We introduce a class of density measures, which is defined using cluster points of the sequence A ( n ) n as well as cluster points of some other similar sequences. We obtain range of possible values of density measures for any subset of . Our description of this range simplifies the description of Bhashkara Rao and Bhashkara Rao [Bhaskara Rao, K. P. S., Bhaskara Rao,...

Rank and spectral multiplicity

Sébastien Ferenczi, Jan Kwiatkowski (1992)

Studia Mathematica

For a dynamical system (X,T,μ), we investigate the connections between a metric invariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T). We build examples of systems for which the pair (m(T),r(T)) takes values (m,m) for any integer m ≥ 1 or (p-1, p) for any prime number p ≥ 3.

Currently displaying 641 – 660 of 901