-adic analysis and Bell numbers of two variables. (Analyse -adique et nombres de Bell à deux variables.)
We obtain, in terms of associated weights, natural criteria for compact embedding of weighted Banach spaces of holomorphic functions on a wide class of domains in the complex plane. Our study is based on a complete characterization of finite-dimensional weighted spaces and canonical weights for them. In particular, we show that for a domain whose complement is not a Painlevé null set each nontrivial space of holomorphic functions with O-growth condition is infinite-dimensional.
In this paper we survey some recent results in connection with the so called Painlevé's problem and the semiadditivity of analytic capacity γ. In particular, we give the detailed proof of the semiadditivity of the capacity γ+, and we show almost completely all the arguments for the proof of the comparability between γ and γ+.
For a given Hurwitz pair the existence of a bilinear mapping (where and ) denote the Clifford algebras of the quadratic forms and , respectively) generated by the Hurwitz multiplication “o” is proved and the counterpart of the Hurwitz condition on the Clifford algebra level is found. Moreover, a necessary and sufficient condition for "⭑" to be generated by the Hurwitz multiplication is shown.