Koebe domain for certain analytic functions in the unit disc under the Montel normalization.
We give a complete and transparent proof of Koebe's General Uniformisation Theorem that every planar Riemann surface is biholomorphic to a domain in the Riemann sphere ℂ̂, by showing that a domain with analytic boundary and at least two boundary components on a planar Riemann surface is biholomorphic to a circular-slit annulus in ℂ.
Let be a polynomial of degree at most which does not vanish in the disk , then for and , Boas and Rahman proved In this paper, we improve the above inequality for by involving some of the coefficients of the polynomial . Analogous result for the class of polynomials having no zero in is also given.
Étant donné une fonction paire et continue, on se demande si une fonction entière de type exponentiel existe telle que soit borné pour . L’existence d’une telle est équivalente à celle d’une fonction croissante sur telle que , que pour , et que , , pourvu que satisfasse à une condition de régularité assez peu restrictive, décrite au début de l’article. On démontre que l’existence d’une telle est à son tour équivalente à ce que la fonction admette une majorante surharmonique...
Under mild conditions on the weight function K we characterize lacunary series in the so-called spaces.
Starting from Lagrange interpolation of the exponential function in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space . Given such a representable entire funtion , in order to study the approximation problem and the uniform convergence of these polynomials to on bounded sets of , we present a sufficient growth condition on the interpolating...