Displaying 281 – 300 of 959

Showing per page

On discrepancy theorems with applications to approximation theory

Hans-Peter Blatt (1995)

Banach Center Publications

We give an overview on discrepancy theorems based on bounds of the logarithmic potential of signed measures. The results generalize well-known results of P. Erdős and P. Turán on the distribution of zeros of polynomials. Besides of new estimates for the zeros of orthogonal polynomials, we give further applications to approximation theory concerning the distribution of Fekete points, extreme points and zeros of polynomials of best uniform approximation.

On Dittmar's approach to the Beltrami equation

Ewa Ligocka (2002)

Colloquium Mathematicae

We recall an old result of B. Dittmar. This result permits us to obtain an existence theorem for the Beltrami equation and some other results as a direct consequence of Moser's classical estimates for elliptic operators.

On Dyakonov type theorems for harmonic quasiregular mappings

Miloš Arsenović, Miroslav Pavlović (2017)

Czechoslovak Mathematical Journal

We prove two Dyakonov type theorems which relate the modulus of continuity of a function on the unit disc with the modulus of continuity of its absolute value. The methods we use are quite elementary, they cover the case of functions which are quasiregular and harmonic, briefly hqr, in the unit disc.

Currently displaying 281 – 300 of 959