The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 381 –
400 of
961
If P(z) is a polynomial of degree n, having all its zeros in the disk [...] then it was shown by Govil [Proc. Amer. Math. Soc. 41, no. 2 (1973), 543-546] that [...] In this paper, we obtain generalization as well as improvement of above inequality for the polynomial of the type [...] Also we generalize a result due to Dewan and Mir [Southeast Asian Bull. Math. 31 (2007), 691-695] in this direction.
We consider linear difference equations whose coefficients are meromorphic at . We characterize the meromorphic equivalence classes of such equations by means of a system of meromorphic invariants. Using an approach inspired by the work of G. D. Birkhoff we show that this system is free.
In this article, we study the uniqueness problem of meromorphic functions in m-punctured complex plane Ω and obtain that there exist two sets S1, S2 with ♯S1 = 2 and ♯S2 = 9, such that any two admissible meromorphic functions f and g in Ω must be identical if f, g share S1, S2 I M in Ω.
We investigate the growth and Borel exceptional values of meromorphic solutions of the Riccati differential equation
w' = a(z) + b(z)w + w²,
where a(z) and b(z) are meromorphic functions. In particular, we correct a result of E. Hille [Ordinary Differential Equations in the Complex Domain, 1976] and get a precise estimate on the growth order of the transcendental meromorphic solution w(z); and if at least one of a(z) and b(z) is non-constant, then we show that w(z)...
Multi-dimensional generalizations of the Wiener-Żelazko and Lévy-Żelazko theorems are obtained.
Currently displaying 381 –
400 of
961