On some new theorems on certain analytic and meromorphic classes of Nevanlinna type on the complex plane
MSC 2010: 33-00, 33C45, 33C52, 30C15, 30D20, 32A17, 32H02, 44A05The 6th International Conference "Transform Methods and Special Functions' 2011", 20 - 23 October 2011 was dedicated to the 80th anniversary of Professor Peter Rusev, as one of the founders of this series of international meetings in Bulgaria, since 1994. It is a pleasure to congratulate the Jubiliar on behalf of the Local Organizing Committee and International Steering Committee, and to present shortly some of his life achievements...
For any holomorphic function on the unit polydisk we consider its restriction to the diagonal, i.e., the function in the unit disc defined by , and prove that the diagonal map maps the space of the polydisk onto the space of the unit disk.
We investigate some radius results for various geometric properties concerning some subclasses of the class 𝓢 of univalent functions.
In this paper some simple conditions on and which lead to some subclasses of univalent functions will be considered.
In this paper we study spaces of holomorphic functions on the right half-plane R, that we denote by Mpω, whose growth conditions are given in terms of a translation invariant measure ω on the closed half-plane R. Such a measure has the form ω = ν ⊗ m, where m is the Lebesgue measure on R and ν is a regular Borel measure on [0, +∞). We call these spaces generalized Hardy–Bergman spaces on the half-plane R. We study in particular the case of ν purely atomic, with point masses on an arithmetic progression...