Realizing step functions as harmonic measure distributions of planar domains.
We consider a quotient space of the Bers boundary of Teichmüller space, which we call the reduced Bers boundary, by collapsing each quasi-conformal deformation space lying there into a point.This boundary turns out to be independent of the basepoint, and the action of the mapping class group extends continuously to this boundary.This is an affirmative answer to Thurston’s conjecture.He also conjectured that this boundary is homeomorphic to the unmeasured lamination space by the correspondence coming...
We consider a commutative algebra over the field of complex numbers with a basis e1, e2 satisfying the conditions [...] (e12+e22)2=0,e12+e22≠0. Let D be a bounded simply-connected domain in ℝ2. We consider (1-4)-problem for monogenic -valued functions Φ(xe1 + ye2) = U1(x, y)e1 + U2(x, y)i e1 + U3(x, y)e2 + U4(x, y)i e2 having the classic derivative in the domain Dζ = xe1 + ye2 : (x, y) ∈ D: to find a monogenic in Dζ function Φ, which is continuously extended to the boundary ∂Dζ, when values of...
Necessary and sufficient conditions are given for the reflected Cauchy's operator (the reflected double layer potential operator) to be continuous as an operator from the space of all continuous functions on the boundary of the investigated domain to the space of all holomorphic functions on this domain (to the space of all harmonic functions on this domain) equipped with the topology of locally uniform convergence.
A mixed boundary value problem on a doubly connected domain in the complex plane is investigated. The solution is given in an integral form using reflection mapping. The reflection mapping makes it possible to reduce the problem to an integral equation considered only on a part of the boundary of the domain.