A distributional representation of strip analytic functions.
We show that under minimal assumptions, the intrinsic metric induced by a strongly local Dirichlet form induces a length space. The main input is a dual characterization of length spaces in terms of the property that the 1-Lipschitz functions form a sheaf.
Let X be a compact Riemmann surface of genus g > 1. A symmetry T of X is an anticonformal involution. The fixed point set of T is a disjoint union of simple closed curves, each of which is called a mirror of T. If T fixes g +1 mirrors then it is called an M-symmetry and X is called an M-surface. If X admits an automorphism of order g + 1 which cyclically permutes the mirrors of T then we shall call X an M-surface with the M-property. In this paper we investigate those M-surfaces with the...
Poincaré's work on the reduction of Abelian integrals contains implicitly an algorithm for the expression of a theta function as a sum of products of theta functions of fewer variables in the presence of reduction. The aim of this paper is to give explicit formulations and reasonably complete proofs of Poincaré's results.
For a -function on the unit ball we define the Bloch norm by where is the invariant derivative of and then show that