A gap series with growth conditions and its applications.
We obtain, for entire functions of exponential type satisfying certain integrability conditions, a quadrature formula using the zeros of spherical Bessel functions as nodes. We deduce from this quadrature formula a result of Olivier and Rahman, which refines itself a formula of Boas.
If Σ is a compact subset of a domain Ω ⊂ ℂ and the cluster values on ∂Σ of a holomorphic function f in Ω∖Σ, f' ≢ 0, are contained in a compact null-set for the holomorphic Dirichlet class, then f extends holomorphically onto the whole domain Ω.