Euler-Summierbarkeit konform-äquivalenter Reihen.
2000 Mathematics Subject Classification: 12D10.In the present paper we consider degree 6 hyperbolic polynomials (HPs) in one variable (i.e. real and with all roots real). We are interested in such HPs whose number of equalities between roots of the polynomial and/or its derivatives is higher than expected. We give the complete study of the four families of such degree 6 even HPs and also of HPs which are primitives of degree 5 HPs.Research partially supported by research project 20682 for cooperation...
Extremal coefficient properties of Pick functions are proved. Even coefficients of analytic univalent functions f with |f(z)| < M, |z| < 1, are bounded by the corresponding coefficients of the Pick functions for large M. This proves a conjecture of Jakubowski. Moreover, it is shown that the Pick functions are not extremal for a similar problem for odd coefficients.
We study a class of nonlinear difference equations admitting a -Gevrey formal power series solution which, in general, is not - (or Borel-) summable. Using right inverses of an associated difference operator on Banach spaces of so-called quasi-functions, we prove that this formal solution can be lifted to an analytic solution in a suitable domain of the complex plane and show that this analytic solution is an accelero-sum of the formal power series.
This paper is devoted to exceptional values of meromorphic functions and of their derivatives on annuli. Some facts on exceptional values for meromorphic functions in the complex plane which were established by Singh, Gopalakrishna and Bhoosnurmath [Math. Ann. 191 (1971), 121-142, and Ann. Polon. Math. 35 (1977/78), 99-105] will be considered on annuli.
It is well-known that the excursions of a one-dimensional diffusion process can be studied by considering a certain Riccati equation associated with the process. We show that, in many cases of interest, the Riccati equation can be solved in terms of an infinite continued fraction. We examine the probabilistic significance of the expansion. To illustrate our results, we discuss some examples of diffusions in deterministic and in random environments.
Nous construisons une famille de surfaces de Riemann hyperelliptiques, de genre variable, munies de fonctions méromorphes de degré deux et d’indice un, ce qui apporte une réponse positive à une conjecture de S. Montiel et A. Ros.