Domains with Finite Dimensional Bergman Space.
We improve the geometric properties of processes derived in an earlier paper, which are then used to obtain more results about the duality of SLE. We find that for κ∈(4, 8), the boundary of a standard chordal SLE(κ) hull stopped on swallowing a fixed x∈ℝ∖{0} is the image of some trace started from a random point. Using this fact together with a similar proposition in the case that κ≥8, we obtain a description of the boundary of a standard chordal SLE(κ) hull for κ>4, at a finite stopping...
We show that two permutable transcendental entire functions may have different dynamical properties, which is very different from the rational functions case.
The paper is concerned with the dynamics of an entire transcendental function whose inverse has only finitely many singularities. It is rpoven that there are no escaping orbits on the Fatou set. Under some extra assumptions the set of escaping orbits has zero Lebesgue measure. If a function depends analytically on parameters then a periodic point as a function of parameters has only algebraic singularities. This yields the Structural Stability Theorem.
We establish local-in-time smoothing of a simple model nonlinear parabolic PDE in a scale of weighted Bergman spaces on a strip provided the weights are not too singular. This constitutes a very strong smoothing property since an immediate consequence is that the PDE can "push away" an algebraic-type complex singularity provided that the order of the singularity is small enough.
This paper is an introduction to dynamics of dianalytic self-maps of nonorientable Klein surfaces. The main theorem asserts that dianalytic dynamics on Klein surfaces can be canonically reduced to dynamics of some classes of analytic self-maps on their orientable double covers. A complete list of those maps is given in the case where the respective Klein surfaces are the real projective plane, the pointed real projective plane and the Klein bottle.