Théorie des nombres et singularités.
Pierrette CASSOU-NOGUÊS (1983/1984)
Seminaire de Théorie des Nombres de Bordeaux
Elizade, E., Romeo, A. (1993)
International Journal of Mathematics and Mathematical Sciences
Frédéric Bayart (2005)
Studia Mathematica
We give general theorems which assert that divergence and universality of certain limiting processes are generic properties. We also define the notion of algebraic genericity, and prove that these properties are algebraically generic as well. We show that universality can occur with Dirichlet series. Finally, we give a criterion for the set of common hypercyclic vectors of a family of operators to be algebraically generic.
Richard Warlimont (1972)
Journal für die reine und angewandte Mathematik
G. Mittag- Leffler (1900)
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
Maurice Blambert, R. Parvatham (1979)
Annales de l'institut Fourier
Localisation des singularités des fonctions analytiques définies par des séries du type exp, où les sont complexes et où les sont des polynômes tayloriens, en utilisant des propriétés obtenues selon deux méthodes originellement dues l’une à B. Lepson pour les séries d’exponentielles à coefficients polynomiaux et dont la suite des exposants est une -suite et l’autre à G. L. Luntz pour les séries de Taylor-Dirichlet. Le résultat fondamental utilise un théorème de A. F. Leont’ev-G. P. Lapin...
Gérald Tenenbaum, Hubert Delange (1992)
Monatshefte für Mathematik
Demanze, O., Mouze, A. (2006)
International Journal of Mathematics and Mathematical Sciences
Vassili Nestoridis (1996)
Annales de l'institut Fourier
We strengthen a result of Chui and Parnes and we prove that the set of universal Taylor series is a -dense subset of the space of holomorphic functions defined in the open unit disc. Our result provides the answer to a question stated by S.K. Pichorides concerning the limit set of Taylor series. Moreover, we study some properties of universal Taylor series and show, in particular, that they are trigonometric series in the sense of D. Menchoff.
Frédéric Bayart, Hervé Queffélec, Kristian Seip (0)
Annales de l’institut Fourier
Enrico Bombieri, Alberto Perelli (2001)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Under certain mild analytic assumptions one obtains a lower bound, essentially of order , for the number of zeros and poles of a Dirichlet series in a disk of radius . A more precise result is also obtained under more restrictive assumptions but still applying to a large class of Dirichlet series.
André Voros (2003)
Annales de l’institut Fourier
A family of Zeta functions built as Dirichlet series over the Riemann zeros are shown to have meromorphic extensions in the whole complex plane, for which numerous analytical features (the polar structures, plus countably many special values) are explicitly displayed.
Jiří Štěpánek (1967)
Časopis pro pěstování matematiky
Pringsheim (1890)
Mathematische Annalen
М.Н. Шеремета (1979)
Matematiceskij sbornik
Р.С. Юлмухаметов (1989)
Matematiceskij sbornik
Э.П. Станкус (1983)
Zapiski naucnych seminarov Leningradskogo
Н.Г. Макаров (1984)
Matematiceskij sbornik
Г.М. Гуляев (1989)
Sibirskij matematiceskij zurnal
И.Ф. Красичков-Терновский (1989)
Matematiceskij sbornik