Displaying 41 – 60 of 67

Showing per page

Strict fine maxima.

Fitzsimmons, P.J. (2000)

Electronic Communications in Probability [electronic only]

Strutture subriemanniane in alcuni problemi di Analisi

Ermanno Lanconelli (2005)

Bollettino dell'Unione Matematica Italiana

Vengono presentati alcuni problemi, idee e tecniche sorte nell'ambito della teoria delle equazioni alle derivate parziali del secondo ordine, con forma caratteristica semidefinita positiva e con soggiacenti strutture sub-riemanniane. Se ne traccia lo sviluppo a partire dalla classica teoria delle funzioni armoniche e caloriche, attraverso la teoria del potenziale negli spazi armonici astratti e la teoria della regolarità locale delle soluzioni.

Subharmonic functions in sub-Riemannian settings

Andrea Bonfiglioli, Ermanno Lanconelli (2013)

Journal of the European Mathematical Society

In this paper we furnish mean value characterizations for subharmonic functions related to linear second order partial differential operators with nonnegative characteristic form, possessing a well-behaved fundamental solution Γ . These characterizations are based on suitable average operators on the level sets of Γ . Asymptotic characterizations are also considered, extending classical results of Blaschke, Privaloff, Radó, Beckenbach, Reade and Saks. We analyze as well the notion of subharmonic function...

Sul problema pluriarmonico in un campo sferico di 𝐂 n per n 3

Maria Adelaide Sneider (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let Σ be the boundary of the unit ball Ω of 𝐂 n . A set of second order linear partial differential operators, tangential to Σ , is explicitly given in such a way that, for n 3 , the corresponding PDE caractherize the trace of the solution of the pluriharmonic problem (either “in the large” or “local”), relative to Ω .

Sur la représentation des formes de Dirichlet

Guy Allain (1975)

Annales de l'institut Fourier

On montre qu’une forme de Dirichlet est décomposable de manière unique en deux formes intégrales et une forme locale. On indique l’expression de cette partie locale dans un cas régulier.

Sur la théorie du potentiel dans les domaines de John.

Alano Ancona (2007)

Publicacions Matemàtiques

Using rather elementary and direct methods, we first recover and add on some results of Aikawa-Hirata-Lundh about the Martin boundary of a John domain. In particular we answer a question raised by these authors. Some applications are given and the case of more general second order elliptic operators is also investigated. In the last parts of the paper two potential theoretic results are shown in the framework of uniform domains or the framework of hyperbolic manifolds.

Currently displaying 41 – 60 of 67