Displaying 541 – 560 of 622

Showing per page

The Poisson integral for a ball in spaces of constant curvature

Eleutherius Symeonidis (2003)

Commentationes Mathematicae Universitatis Carolinae

We present explicit expressions of the Poisson kernels for geodesic balls in the higher dimensional spheres and real hyperbolic spaces. As a consequence, the Dirichlet problem for the projective space is explicitly solved. Comparison of different expressions for the same Poisson kernel lead to interesting identities concerning special functions.

The restriction theorem for fully nonlinear subequations

F. Reese Harvey, H. Blaine Lawson (2014)

Annales de l’institut Fourier

Let X be a submanifold of a manifold Z . We address the question: When do viscosity subsolutions of a fully nonlinear PDE on Z , restrict to be viscosity subsolutions of the restricted subequation on X ? This is not always true, and conditions are required. We first prove a basic result which, in theory, can be applied to any subequation. Then two definitive results are obtained. The first applies to any “geometrically defined” subequation, and the second to any subequation which can be transformed...

The surjectivity of a constant coefficient homogeneous differential operator in the real analytic functions and the geometry of its symbol

Rüdiger W. Braun (1995)

Annales de l'institut Fourier

Hörmander has characterized the surjective constant coefficient partial differential operators on the space of all real analytic functions on N by a Phragmén-Lindelöf condition. Geometric implications of this condition and, for homogeneous operators, of the corresponding condition for Gevrey classes are given.

The trilinear embedding theorem

Hitoshi Tanaka (2015)

Studia Mathematica

Let σ i , i = 1,2,3, denote positive Borel measures on ℝⁿ, let denote the usual collection of dyadic cubes in ℝⁿ and let K: → [0,∞) be a map. We give a characterization of a trilinear embedding theorem, that is, of the inequality Q K ( Q ) i = 1 3 | Q f i d σ i | C i = 1 3 | | f i | | L p i ( d σ i ) in terms of a discrete Wolff potential and Sawyer’s checking condition, when 1 < p₁,p₂,p₃ < ∞ and 1/p₁ + 1/p₂ + 1/p₃ ≥ 1.

The Wolff gradient bound for degenerate parabolic equations

Tuomo Kuusi, Giuseppe Mingione (2014)

Journal of the European Mathematical Society

The spatial gradient of solutions to non-homogeneous and degenerate parabolic equations of p -Laplacean type can be pointwise estimated by natural Wolff potentials of the right hand side measure.

Theory of Bessel potentials. III : potentials on regular manifolds

Robert Adams, Nachman Aronszajn, M. S. Hanna (1969)

Annales de l'institut Fourier

In this paper Bessel potentials on C -Riemannian manifolds (open or bordered) are studied. Let M be an n -dimensional manifold, and N a submanifold of M of dimension k . Sufficient conditions are given for: 1) the restriction to N of any potential of order α on M to be a potential of order α - n - k 2 on N  ; 2) any potential of order α - n - k 2 on N to be extendable to a potential of order α on M . It is also proved that for a bordered manifold M the restriction to its interior M i is an isometric isomorphism between the...

Thinness and non-tangential limit associated to coupled PDE

Allami Benyaiche, Salma Ghiate (2013)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we study the reduit, the thinness and the non-tangential limit associated to a harmonic structure given by coupled partial differential equations. In particular, we obtain such results for biharmonic equation (i.e. 2 ϕ = 0 ) and equations of 2 ϕ = ϕ type.

Currently displaying 541 – 560 of 622