The Poisson Boundary of the Mapping Class Group and of Teichmüller Space
We present explicit expressions of the Poisson kernels for geodesic balls in the higher dimensional spheres and real hyperbolic spaces. As a consequence, the Dirichlet problem for the projective space is explicitly solved. Comparison of different expressions for the same Poisson kernel lead to interesting identities concerning special functions.
Let be a submanifold of a manifold . We address the question: When do viscosity subsolutions of a fully nonlinear PDE on , restrict to be viscosity subsolutions of the restricted subequation on ? This is not always true, and conditions are required. We first prove a basic result which, in theory, can be applied to any subequation. Then two definitive results are obtained. The first applies to any “geometrically defined” subequation, and the second to any subequation which can be transformed...
Hörmander has characterized the surjective constant coefficient partial differential operators on the space of all real analytic functions on by a Phragmén-Lindelöf condition. Geometric implications of this condition and, for homogeneous operators, of the corresponding condition for Gevrey classes are given.
Let , i = 1,2,3, denote positive Borel measures on ℝⁿ, let denote the usual collection of dyadic cubes in ℝⁿ and let K: → [0,∞) be a map. We give a characterization of a trilinear embedding theorem, that is, of the inequality in terms of a discrete Wolff potential and Sawyer’s checking condition, when 1 < p₁,p₂,p₃ < ∞ and 1/p₁ + 1/p₂ + 1/p₃ ≥ 1.
The theory of Markov processes and the analysis on Lie groups are used to study the eigenvalue asymptotics of Dirichlet forms perturbed by scalar potentials.
The spatial gradient of solutions to non-homogeneous and degenerate parabolic equations of -Laplacean type can be pointwise estimated by natural Wolff potentials of the right hand side measure.
In this paper Bessel potentials on -Riemannian manifolds (open or bordered) are studied. Let be an -dimensional manifold, and a submanifold of of dimension . Sufficient conditions are given for: 1) the restriction to of any potential of order on to be a potential of order on ; 2) any potential of order on to be extendable to a potential of order on . It is also proved that for a bordered manifold the restriction to its interior is an isometric isomorphism between the...
In this paper, we study the reduit, the thinness and the non-tangential limit associated to a harmonic structure given by coupled partial differential equations. In particular, we obtain such results for biharmonic equation (i.e. ) and equations of type.