On exit laws for semigroups in weak duality
Let be a measurable semigroup and a -finite positive measure on a Lusin space . An -exit law for is a family of nonnegative measurable functions on which are finite -a.e. and satisfy for each
Let be a measurable semigroup and a -finite positive measure on a Lusin space . An -exit law for is a family of nonnegative measurable functions on which are finite -a.e. and satisfy for each
In the present paper we study the integral representation of nonnegative finely superharmonic functions in a fine domain subset of a Brelot -harmonic space with countable base of open subsets and satisfying the axiom . When satisfies the hypothesis of uniqueness, we define the Martin boundary of and the Martin kernel and we obtain the integral representation of invariant functions by using the kernel . As an application of the integral representation we extend to the cone of nonnegative...
The Martin compactification of a bounded Lipschitz domain is shown to be for a large class of uniformly elliptic second order partial differential operators on .Let be an open Riemannian manifold and let be open relatively compact, connected, with Lipschitz boundary. Then is the Martin compactification of associated with the restriction to of the Laplace-Beltrami operator on . Consequently an open Riemannian manifold has at most one compactification which is a compact Riemannian...
We shall characterize the sets of locally uniform convergence of pointwise convergent sequences. Results obtained for sequences of holomorphic functions by Hartogs and Rosenthal in 1928 will be generalized for many other sheaves of functions. In particular, our Hartogs-Rosenthal type theorem holds for the sheaf of solutions to the second order elliptic PDE's as well as it has applications to the theory of harmonic spaces.
Dans ce travail, on s’est posé le problème suivant : étant donné un cône convexe de fonction s.c.i. sur localement compact, à quelles conditions est-il le cône des fonctions surharmoniques dans pour une certaine théorie locale du potentiel, à construire effectivement à partir de ? On montre que si est maximal (dans l’ensemble des cônes de fonctions vérifiant un principe du minimum), séparant et contient assez de fonctions continues, on peut construire un faisceau de cônes de fonctions...