Displaying 101 – 120 of 182

Showing per page

On exit laws for semigroups in weak duality

Imed Bachar (2001)

Commentationes Mathematicae Universitatis Carolinae

Let : = ( P t ) t > 0 be a measurable semigroup and m a σ -finite positive measure on a Lusin space X . An m -exit law for is a family ( f t ) t > 0 of nonnegative measurable functions on X which are finite m -a.e. and satisfy for each s , t > 0 P s ...

On the integral representation of finely superharmonic functions

Abderrahim Aslimani, Imad El Ghazi, Mohamed El Kadiri (2019)

Commentationes Mathematicae Universitatis Carolinae

In the present paper we study the integral representation of nonnegative finely superharmonic functions in a fine domain subset U of a Brelot 𝒫 -harmonic space Ω with countable base of open subsets and satisfying the axiom D . When Ω satisfies the hypothesis of uniqueness, we define the Martin boundary of U and the Martin kernel K and we obtain the integral representation of invariant functions by using the kernel K . As an application of the integral representation we extend to the cone 𝒮 ( 𝒰 ) of nonnegative...

On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold

John C. Taylor (1978)

Annales de l'institut Fourier

The Martin compactification of a bounded Lipschitz domain D R n is shown to be D for a large class of uniformly elliptic second order partial differential operators on D .Let X be an open Riemannian manifold and let M X be open relatively compact, connected, with Lipschitz boundary. Then M is the Martin compactification of M associated with the restriction to M of the Laplace-Beltrami operator on X . Consequently an open Riemannian manifold X has at most one compactification which is a compact Riemannian...

Pointwise and locally uniform convergence of holomorphic and harmonic functions

Libuše Štěpničková (1999)

Commentationes Mathematicae Universitatis Carolinae

We shall characterize the sets of locally uniform convergence of pointwise convergent sequences. Results obtained for sequences of holomorphic functions by Hartogs and Rosenthal in 1928 will be generalized for many other sheaves of functions. In particular, our Hartogs-Rosenthal type theorem holds for the sheaf of solutions to the second order elliptic PDE's as well as it has applications to the theory of harmonic spaces.

Principe du minimum et maximalité en théorie du potentiel

Gabriel Mokobodski, Daniel Sibony (1967)

Annales de l'institut Fourier

Dans ce travail, on s’est posé le problème suivant : étant donné un cône convexe S de fonction s.c.i. sur Ω localement compact, à quelles conditions L est-il le cône des fonctions surharmoniques dans Ω pour une certaine théorie locale du potentiel, à construire effectivement à partir de S  ? On montre que si S est maximal (dans l’ensemble des cônes de fonctions vérifiant un principe du minimum), séparant et contient assez de fonctions continues, on peut construire un faisceau de cônes de fonctions...

Currently displaying 101 – 120 of 182