The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

On Bochner-Martinelli residue currents and their annihilator ideals

Mattias Jonsson, Elizabeth Wulcan (2009)

Annales de l’institut Fourier

We study the residue current R f of Bochner-Martinelli type associated with a tuple f = ( f 1 , , f m ) of holomorphic germs at 0 C n , whose common zero set equals the origin. Our main results are a geometric description of R f in terms of the Rees valuations associated with the ideal ( f ) generated by f and a characterization of when the annihilator ideal of R f equals ( f ) .

On the Briançon-Skoda theorem on a singular variety

Mats Andersson, Håkan Samuelsson, Jacob Sznajdman (2010)

Annales de l’institut Fourier

Let Z be a germ of a reduced analytic space of pure dimension. We provide an analytic proof of the uniform Briançon-Skoda theorem for the local ring 𝒪 Z ; a result which was previously proved by Huneke by algebraic methods. For ideals with few generators we also get much sharper results.

On the Cauchy problem in a class of entire functions in several variables

Eugeni Leinartas (1996)

Banach Center Publications

We study the integral representation of solutions to the Cauchy problem for a differential equation with constant coefficients. The Cauchy data and the right-hand of the equation are given by entire functions on a complex hyperplane of n + 1 . The Borel transformation of power series and residue theory are used as the main methods of investigation.

Currently displaying 1 – 7 of 7

Page 1