Noethérianité de certaines algèbres de fonctions analytiques et applications
Let be a real-analytic submanifold and H(M) the algebra of real analytic functions on M. If K ⊂ M is a compact subset we consider ; is a multiplicative subset of . Let be the localization of H(M) with respect to . In this paper we prove, first, that is a regular ring (hence noetherian) and use this result in two situations: 1) For each open subset , we denote by O(Ω) the subalgebra of H(Ω) defined as follows: f ∈ O(Ω) if and only if for all x ∈ Ω, the germ of f at x, , is algebraic...