Page 1

Displaying 1 – 2 of 2

Showing per page

Hamiltonian stability and subanalytic geometry

Laurent Niederman (2006)

Annales de l’institut Fourier

In the 70’s, Nekhorochev proved that for an analytic nearly integrable Hamiltonian system, the action variables of the unperturbed Hamiltonian remain nearly constant over an exponentially long time with respect to the size of the perturbation, provided that the unperturbed Hamiltonian satisfies some generic transversality condition known as steepness. Using theorems of real subanalytic geometry, we derive a geometric criterion for steepness: a numerical function h which is real analytic around a...

Currently displaying 1 – 2 of 2

Page 1