Page 1 Next

Displaying 1 – 20 of 23

Showing per page

Siciak's extremal function in complex and real analysis

W. Pleśniak (2003)

Annales Polonici Mathematici

The Siciak extremal function establishes an important link between polynomial approximation in several variables and pluripotential theory. This yields its numerous applications in complex and real analysis. Some of them can be found on a rich list drawn up by Klimek in his well-known monograph "Pluripotential Theory". The purpose of this paper is to supplement it by applications in constructive function theory.

Spectral geometry of semi-algebraic sets

Mikhael Gromov (1992)

Annales de l'institut Fourier

The spectrum of the Laplace operator on algebraic and semialgebraic subsets A in R N is studied and the number of small eigenvalues is estimated by the degree of A .

Stokes' formula for stratified forms

Guillaume Valette (2015)

Annales Polonici Mathematici

A stratified form is a collection of forms defined on the strata of a stratification of a subanalytic set and satisfying a continuity property when we pass from one stratum to another. We prove that these forms satisfy Stokes' formula on subanalytic singular simplices.

Stratified Whitney jets and tempered ultradistributions on the subanalytic site

N. Honda, G. Morando (2011)

Bulletin de la Société Mathématique de France

In this paper we introduce the sheaf of stratified Whitney jets of Gevrey order on the subanalytic site relative to a real analytic manifold X . Then, we define stratified ultradistributions of Beurling and Roumieu type on X . In the end, by means of stratified ultradistributions, we define tempered-stratified ultradistributions and we prove two results. First, if X is a real surface, the tempered-stratified ultradistributions define a sheaf on the subanalytic site relative to X . Second, the tempered-stratified...

Subanalytic version of Whitney's extension theorem

Krzysztof Kurdyka, Wiesław Pawłucki (1997)

Studia Mathematica

For any subanalytic C k -Whitney field (k finite), we construct its subanalytic C k -extension to n . Our method also applies to other o-minimal structures; e.g., to semialgebraic Whitney fields.

Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity

Andrei A. Agrachev, Andrei V. Sarychev (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study sub-Riemannian (Carnot-Caratheodory) metrics defined by noninvolutive distributions on real-analytic Riemannian manifolds. We establish a connection between regularity properties of these metrics and the lack of length minimizing abnormal geodesics. Utilizing the results of the previous study of abnormal length minimizers accomplished by the authors in [Annales IHP. Analyse nonlinéaire 13, p. 635-690] we describe in this paper two classes of the germs of distributions (called 2-generating...

Supplement to the paper "Quasianalytic perturbation of multi-parameter hyperbolic polynomials and symmetric matrices" (Ann. Polon. Math. 101 (2011), 275-291)

Krzysztof Jan Nowak (2012)

Annales Polonici Mathematici

In IMUJ Preprint 2009/05 we investigated the quasianalytic perturbation of hyperbolic polynomials and symmetric matrices by applying our quasianalytic version of the Abhyankar-Jung theorem from IMUJ Preprint 2009/02, whose proof relied on a theorem by Luengo on ν-quasiordinary polynomials. But those papers of ours were suspended after we had become aware that Luengo's paper contained an essential gap. This gave rise to our subsequent article on quasianalytic perturbation theory, which developed,...

Currently displaying 1 – 20 of 23

Page 1 Next