-diffeomorphismen semianalytischer und subanalytischer Mengen
In 1988 it was proved by the first author that the closure of a partially semialgebraic set is partially semialgebraic. The essential tool used in that proof was the regular separation property. Here we give another proof without using this tool, based on the semianalytic L-cone theorem (Theorem 2), a semianalytic analog of the Cartan-Remmert-Stein lemma with parameters.
In this paper we construct non-trivial examples of blow-analytic isomorphisms and we obtain, via toric modifications, an inverse function theorem in this category. We also show that any analytic curve in , can be deformed via a rational blow- analytic isomorphism of , to a smooth analytic arc.