-diffeomorphismen semianalytischer und subanalytischer Mengen
Page 1
Klaus Reichard (1980)
Compositio Mathematica
María-Angeles Zurro (2007)
Bulletin of the Polish Academy of Sciences. Mathematics
In 1988 it was proved by the first author that the closure of a partially semialgebraic set is partially semialgebraic. The essential tool used in that proof was the regular separation property. Here we give another proof without using this tool, based on the semianalytic L-cone theorem (Theorem 2), a semianalytic analog of the Cartan-Remmert-Stein lemma with parameters.
Luca Prelli (2011)
Rendiconti del Seminario Matematico della Università di Padova
C. Andradas, A. Castilla (1996)
Journal für die reine und angewandte Mathematik
Toshizumi Fukui, Tzee-Char Kuo, Laurentiu Paunescu (2001)
Annales de l’institut Fourier
In this paper we construct non-trivial examples of blow-analytic isomorphisms and we obtain, via toric modifications, an inverse function theorem in this category. We also show that any analytic curve in , can be deformed via a rational blow- analytic isomorphism of , to a smooth analytic arc.
D. Barlet (1985)
Compositio Mathematica
P. Schapira (1988/1989)
Séminaire Équations aux dérivées partielles (Polytechnique)
Page 1