On a Generalization of the Hopf Fibration, III. (Subvarieties in the C-Spaces).
We construct closed complex submanifolds of which are differential but not holomorphic complete intersections. We also prove a homotopy principle concerning the removal of intersections with certain complex subvarieties of .
We give a characterization of the irreducible components of a Weierstrass-type (W-type) analytic (resp. algebraic, Nash) variety in terms of the orbits of a Galois group associated in a natural way to this variety. Since every irreducible variety of pure dimension is (locally) a component of a W-type variety, this description may be applied to any such variety.
Conditions characterizing the membership of the ideal of a subvariety arising from (effective) divisors in a product complex space Y × X are given. For the algebra of relative regular functions on an algebraic variety V, the strict stability is proved, in the case where Y is a normal space, and the Noether stability is established under a weakened condition. As a consequence (for both general and complete intersections) a global Nullstellensatz is derived for divisors in , respectively, . Also...
Let be a complex manifold of dimension at least which has an exhaustion function whose Levi form has at each point at least strictly positive eigenvalues. We construct proper holomorphic discs in through any given point and in any given direction.
We prove that the generalized index of intersection of an analytic set with a closed submanifold (Thm. 4.3) and the intersection product of analytic cycles (Thm. 5.4), which are defined in [T₂], are intrinsic. We define the intersection product of analytic cycles on a reduced analytic space (Def. 5.8) and prove a relation of its degree and the exponent of proper separation (Thm. 6.3).
An effective formula for the Łojasiewicz exponent for analytic curves in a neighbourhood of 0 ∈ ℂ is given.
The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality holds near for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.