The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we consider an analytic family of holomorphic mappings and the sequence of iterates of . If the sequence is not compactly divergent, there exists an unique retraction adherent to the sequence . If is a strictly convex taut domain in and if the image of is of dimension , we prove that does not depend from . We apply this result to the existence of fixed points of holomorphic mappings on the product of two bounded strictly convex domains.
Currently displaying 1 –
3 of
3