Page 1

Displaying 1 – 5 of 5

Showing per page

The dynamics of holomorphic maps near curves of fixed points

Filippo Bracci (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let M be a two-dimensional complex manifold and f : M M a holomorphic map. Let S M be a curve made of fixed points of f , i.e.  Fix ( f ) = S . We study the dynamics near  S in case  f acts as the identity on the normal bundle of the regular part of  S . Besides results of local nature, we prove that if  S is a globally and locally irreducible compact curve such that S · S < 0 then there exists a point p S and a holomorphic f -invariant curve with  p on the boundary which is attracted by  p under the action of  f . These results are achieved...

Topology of Fatou components for endomorphisms of k : linking with the Green’s current

Suzanne Lynch Hruska, Roland K. W. Roeder (2010)

Fundamenta Mathematicae

Little is known about the global topology of the Fatou set U(f) for holomorphic endomorphisms f : k k , when k >1. Classical theory describes U(f) as the complement in k of the support of a dynamically defined closed positive (1,1) current. Given any closed positive (1,1) current S on k , we give a definition of linking number between closed loops in k s u p p S and the current S. It has the property that if lk(γ,S) ≠ 0, then γ represents a non-trivial homology element in H ( k s u p p S ) . As an application, we use these linking...

Currently displaying 1 – 5 of 5

Page 1