Oka' s inequality for currents and applications.
We charocterize the commuting polynomial automorphisms of C2, using their meromorphic extension to P2 and looking at their dynamics on the line at infinity.
We prove that each degree two quasiregular polynomial is conjugate to Q(z) = z² - (p+q)|z|² + pqz̅² + c, |p| < 1, |q| < 1. We also show that the complexification of Q can be extended to a polynomial endomorphism of ℂℙ² which acts as a Blaschke product (z-p)/(1-p̅z) · (z-q)/(1-q̅z) on ℂℙ²∖ℂ². Using this fact we study the dynamics of Q under iteration.
We study a linearization of a real-analytic plane map in the neighborhood of its fixed point of holomorphic type. We prove a generalization of the classical Koenig theorem. To do that, we use the well known results concerning the local dynamics of holomorphic mappings in ℂ².
It is shown that an infinite sequence of polynomial mappings of several complex variables, with suitable growth restrictions, determines a filled-in Julia set which is pluriregular. Such sets depend continuously and analytically on the generating sequences, in the sense of pluripotential theory and the theory of set-valued analytic functions, respectively.
We study conditions involving the critical set of a regular polynomial endomorphism f∶ℂ2↦ℂ2 under which all complete external rays from infinity for f have well defined endpoints.
We extend the results obtained in our previous paper, concerning quasiregular polynomials of algebraic degree two, to the case of polynomial endomorphisms of ℝ² whose algebraic degree is equal to their topological degree. We also deal with some other classes of polynomial endomorphisms extendable to ℂℙ².
We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric.
Harvey and Lawson introduced the Kähler rank and computed it in connection to the cone of positive exact currents of bidimension for many classes of compact complex surfaces. In this paper we extend these computations to the only further known class of surfaces not considered by them, that of Kato surfaces. Our main tool is the reduction to the dynamics of associated holomorphic contractions .