Displaying 181 – 200 of 403

Showing per page

K-analytic versus ccm-analytic sets in nonstandard compact complex manifolds

Rahim Moosa, Sergei Starchenko (2008)

Fundamenta Mathematicae

It is shown that in an elementary extension of a compact complex manifold M, the K-analytic sets (where K is the algebraic closure of the underlying real closed field) agree with the ccm-analytic sets if and only if M is essentially saturated. In particular, this is the case for compact Kähler manifolds.

Killing divisor classes by algebraisation

Alexandru Buium (1985)

Annales de l'institut Fourier

It is proved that any isolated singularity of complete intersection has an algebraisation whose divisor class group is finitely generated.

L 2 extension of adjoint line bundle sections

Dano Kim (2010)

Annales de l’institut Fourier

We prove an extension theorem of Ohsawa-Takegoshi type for line bundle sections on a subvariety of general codimension in a normal projective variety. Our method of proof gives conditions to be satisfied for such extension in a general setting, while such conditions are satisfied when the subvariety is given by an appropriate multiplier ideal sheaf.

Lagrangian fibrations on hyperkähler manifolds – On a question of Beauville

Daniel Greb, Christian Lehn, Sönke Rollenske (2013)

Annales scientifiques de l'École Normale Supérieure

Let  X be a compact hyperkähler manifold containing a complex torus L as a Lagrangian subvariety. Beauville posed the question whether X admits a Lagrangian fibration with fibre L . We show that this is indeed the case if X is not projective. If X is projective we find an almost holomorphic Lagrangian fibration with fibre L under additional assumptions on the pair ( X , L ) , which can be formulated in topological or deformation-theoretic terms. Moreover, we show that for any such almost holomorphic Lagrangian...

Les groupes de Burger-Mozes ne sont pas kählériens

Thibaut Delcroix (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Burger et Mozes ont construit des exemples de groupes simples infinis, qui sont des réseaux dans le groupe des automorphismes d’un immeuble cubique. On montre qu’il n’existe pas de morphisme d’un groupe kählérien vers l’un de ces groupes dont le noyau soit finiment engendré. On en déduit que ces groupes ne sont pas kählériens.

Currently displaying 181 – 200 of 403