Milnor numbers and the topology of polynomial hypersurfaces.
We give a model-theoretic interpretation of a result by Campana and Fujiki on the algebraicity of certain spaces of cycles on compact complex spaces. The model-theoretic interpretation is in the language of canonical bases, and says that if b,c are tuples in an elementary extension 𝓐* of the structure 𝓐 of compact complex manifolds, and b is the canonical base of tp(c/b), then tp(b/c) is internal to the sort (ℙ¹)*. The Zilber dichotomy in 𝓐* follows immediately (a type of U-rank 1 is locally...
We show that the moduli space of polarized irreducible symplectic manifolds of -type, of fixed polarization type, is not always connected. This can be derived as a consequence of Eyal Markman’s characterization of polarized parallel-transport operators of -type.
For algebraic number fields with real and complex embeddings and “admissible” subgroups of the multiplicative group of integer units of we construct and investigate certain -dimensional compact complex manifolds . We show among other things that such manifolds are non-Kähler but admit locally conformally Kähler metrics when . In particular we disprove a conjecture of I. Vaisman.