Displaying 361 – 380 of 403

Showing per page

The Soliton-Ricci Flow with variable volume forms

Nefton Pali (2016)

Complex Manifolds

We introduce a flow of Riemannian metrics and positive volume forms over compact oriented manifolds whose formal limit is a shrinking Ricci soliton. The case of a fixed volume form has been considered in our previouswork.We still call this new flow, the Soliton-Ricci flow. It corresponds to a forward Ricci type flow up to a gauge transformation. This gauge is generated by the gradient of the density of the volumes. The new Soliton-Ricci flow exist for all times. It represents the gradient flow of...

Three-manifolds and Kähler groups

D. Kotschick (2012)

Annales de l’institut Fourier

We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is or 2 .

Towards a Mori theory on compact Kähler threefolds III

Thomas Peternell (2001)

Bulletin de la Société Mathématique de France

Based on the results of the first two parts to this paper, we prove that the canonical bundle of a minimal Kähler threefold (i.e. K X is nef) is good,i.e.its Kodaira dimension equals the numerical Kodaira dimension, (in particular some multiple of K X is generated by global sections); unless X is simple. “Simple“ means that there is no compact subvariety through the very general point of X and X not Kummer. Moreover we show that a compact Kähler threefold with only terminal singularities whose canonical...

Un complément à l’article de Dloussky sur le colmatage des surfaces holomorphes

Marco Brunella (2008)

Annales de l’institut Fourier

Nous étudions les surfaces complexes compactes qui sont des dégénérations de surfaces de Hopf éclatées. Nous démontrons que si une telle surface S contient une hypersurface réelle globale strictement pseudoconvexe, alors S est une surface de Kato. Ceci permet d’améliorer un résultat de Dloussky, paru dans ce même journal en 1993.

Une caractérisation des surfaces d'Inoue-Hirzebruch

Karl Oeljeklaus, Matei Toma, Dan Zaffran (2001)

Annales de l’institut Fourier

On montre que parmi les surfaces compactes complexes de classe V I I 0 avec b 2 > 0 , les surfaces d’Inoue-Hirzebruch sont caractérisées par le fait qu’elles possèdent deux champs de vecteurs tordus. Ce résultat est un pas vers la compréhension des feuilletages sur les surfaces V I I 0 .

[unknown]

Shigeharu Takayama (0)

Annales de l’institut Fourier

Currently displaying 361 – 380 of 403