Contact geometry and complex surfaces.
Hansjörg Geiges, Jesús Gonzalo (1995)
Inventiones mathematicae
Tadao Oda (1988)
Bo Berndtsson (2013)
Annales de la faculté des sciences de Toulouse Mathématiques
These are the lecture notes of a minicourse given at a winter school in Marseille 2011. The aim of the course was to give an introduction to recent work on the geometry of the space of Kähler metrics associated to an ample line bundle. The emphasis of the course was the role of convexity, both as a motivating example and as a tool.
F. Campana (1981)
Inventiones mathematicae
Ahcène Lamari (1999)
Annales de l'institut Fourier
Le théorème de régularisation de Demailly ramène l’existence d’une métrique kählérienne sur une surface compacte à celle d’un (1-1)-courant strictement positif -fermé (“courant kählérien”). Après avoir démontré un critère d’existence d’un tel courant, nous utilisons la symétrie de Hodge pour donner une démonstration unifiée du caractère kählérien des surfaces compactes à premier nombre de Betti pair.
R. V. Gurjar, A. R. Shastri (1985)
Compositio Mathematica
Andrew John Sommese (1975)
Mathematische Annalen
Camilla Horst (1985)
Mathematische Annalen
Joachim Wehler (1982)
Mathematische Zeitschrift
Joachim Wehler (1984)
Mathematische Annalen
Jun-Muk Hwang, Ngaiming Mok (2002)
Annales scientifiques de l'École Normale Supérieure
Geneviève Pourcin (1987)
Annales de l'institut Fourier
An universal analytic structure is construted on the set of (singular) holomorphic foliations on a normal compact space. Such a foliation is by definition a coherent subsheaf of the holomorphic tangent sheaf stable by the Lie-bracket
Jaume Amorós, Mònica Manjarín, Marcel Nicolau (2012)
Journal of the European Mathematical Society
We study compact Kähler manifolds admitting nonvanishing holomorphic vector fields, extending the classical birational classification of projective varieties with tangent vector fields to a classification modulo deformation in the Kähler case, and biholomorphic in the projective case. We introduce and analyze a new class of , and show that they form a smooth subspace in the Kuranishi space of deformations of the complex structure of . We extend Calabi’s theorem on the structure of compact Kähler...
Thomas Peternell (1985)
Mathematische Annalen
Hans Grauert (1974)
Inventiones mathematicae
Roberto Mossa (2016)
Complex Manifolds
Let f : Y → X be a continuous map between a compact real analytic Kähler manifold (Y, g) and a compact complex hyperbolic manifold (X, g0). In this paper we give a lower bound of the diastatic entropy of (Y, g) in terms of the diastatic entropy of (X, g0) and the degree of f . When the lower bound is attained we get geometric rigidity theorems for the diastatic entropy analogous to the ones obtained by G. Besson, G. Courtois and S. Gallot [2] for the volume entropy. As a corollary,when X = Y,we...
Ciprian Borcea (1986)
Mathematische Annalen
Sébastien Boucksom (2004)
Annales scientifiques de l'École Normale Supérieure
Siegmund Kosarew (1988)
Journal für die reine und angewandte Mathematik
Gerd Fischer, Otto Forster (1979)
Journal für die reine und angewandte Mathematik