Page 1

Displaying 1 – 4 of 4

Showing per page

Remarks on the balanced metric on Hartogs triangles with integral exponent

Qiannan Zhang, Huan Yang (2023)

Czechoslovak Mathematical Journal

In this paper we study the balanced metrics on some Hartogs triangles of exponent γ + , i.e., Ω n ( γ ) = { z = ( z 1 , , z n ) n : | z 1 | 1 / γ < | z 2 | < < | z n | < 1 } equipped with a natural Kähler form ω g ( μ ) : = 1 2 ( i / π ) ¯ Φ n with Φ n ( z ) = - μ 1 ln ( | z 2 | 2 γ - | z 1 | 2 ) - i = 2 n - 1 μ i ln ( | z i + 1 | 2 - | z i | 2 ) - μ n ln ( 1 - | z n | 2 ) , where μ = ( μ 1 , , μ n ) , μ i > 0 , depending on n parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for ( Ω n ( γ ) , g ( μ ) ) and we prove that g ( μ ) is balanced if and only if μ 1 > 1 and γ μ 1 is an integer, μ i are integers such that μ i 2 for all i = 2 , ... , n - 1 , and μ n > 1 . Second, we prove that g ( μ ) is Kähler-Einstein if and only if μ 1 = μ 2 = = μ n = 2 λ , where λ is a nonzero...

Représentations linéaires des groupes kählériens et de leurs analogues projectifs

Fréderic Campana, Benoît Claudon, Philippe Eyssidieux (2014)

Journal de l’École polytechnique — Mathématiques

Dans cette note nous établissons le résultat suivant, annoncé dans [CCE13] : si G GL n ( ) est l’image d’une représentation linéaire d’un groupe kählérien π 1 ( X ) , il admet un sous-groupe d’indice fini qui est l’image d’une représentation linéaire du groupe fondamental d’une variété projective complexe lisse X ' .Il s’agit donc de la solution (à indice fini près) pour les représentations linéaires d’une question usuelle demandant si le groupe fondamental d’une variété kählérienne compacte est aussi celui d’une variété...

Currently displaying 1 – 4 of 4

Page 1