The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Les fonctions plurisousharmoniques négatives dans un domaine Ω de ℂⁿ forment un cône convexe. Nous considérons les points extrémaux de ce cône, et donnons trois exemples. En particulier, nous traitons le cas de la fonction de Green pluricomplexe. Nous calculons celle du bidisque, lorsque les pôles se situent sur un axe. Nous montrons que cette fonction ne coïncide pas avec la fonction de Lempert correspondante. Cela donne un contre-exemple à une conjecture de Dan Coman.
We prove, among other results, that is plurisubharmonic (psh) when belong to a family of functions in where is the -Lipchitz functional space with Then we establish a new characterization of holomorphic functions defined on open sets of
We generalize a theorem of Siciak on the polynomial approximation of the Lelong class to the setting of toric manifolds with an ample line bundle. We also characterize Lelong classes by means of a growth condition on toric manifolds with an ample line bundle and construct an example of a nonample line bundle for which Siciak's theorem does not hold.
Currently displaying 1 –
6 of
6