Parabolic exhaustions for strictly convex domains.
The search session has expired. Please query the service again.
Page 1
Giorgio Patrizio (1984)
Manuscripta mathematica
Siegfried Momm (1990)
Studia Mathematica
Herbert Alexander, Joaquim Bruna (1995)
Revista Matemática Iberoamericana
G. Bassanelli, Lucia Alessandrini (1993)
Forum mathematicum
Mechthild Behrens (1985)
Mathematische Annalen
Rafał Czyż, Lisa Hed, Håkan Persson (2012)
Annales Polonici Mathematici
Poletsky has introduced a notion of plurisubharmonicity for functions defined on compact sets in ℂⁿ. We show that these functions can be completely characterized in terms of monotone convergence of plurisubharmonic functions defined on neighborhoods of the compact.
John Erik Fornaess (1983)
Mathematica Scandinavica
E. Bedford, B. A. Taylor (1988)
Annales de l'institut Fourier
To a plurisubharmonic function on with logarithmic growth at infinity, we may associate the Robin functiondefined on , the hyperplane at infinity. We study the classes , and (respectively) of plurisubharmonic functions which have the form and (respectively) for which the function is not identically . We obtain an integral formula which connects the Monge-Ampère measure on the space with the Robin function on . As an application we obtain a criterion on the convergence of the Monge-Ampère...
Siegfried Momm (1996)
Annales Polonici Mathematici
A certain linear growth of the pluricomplex Green function of a bounded convex domain of at a given boundary point is related to the existence of a certain plurisubharmonic function called a “plurisubharmonic saddle”. In view of classical results on the existence of angular derivatives of conformal mappings, for the case of a single complex variable, this allows us to deduce a criterion for the existence of subharmonic saddles.
Eric Bedford, John Smillie (1991)
Inventiones mathematicae
Noureddine Ghiloufi, Khalifa Dabbek (2009)
Annales mathématiques Blaise Pascal
Le but de cet article est de montrer un résultat de prolongement d’un courant positif, défini en dehors d’un obstacle fermé, dont le est dominé par un courant positif fermé de masse localement finie. On étudie divers types d’obstacles : soit un ensemble fermé pluripolaire complet, soit l’ensemble des zéros d’une fonction strictement -convexe positive. Dans la troisième partie, sous des conditions sur la dimension de Hausdorff de l’obstacle, on démontre le prolongement d’un tel courant. On termine...
Viorel Vâjâitu (2000)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Page 1