The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a psh function on a bounded pseudoconvex open set , and let be the associated multiplier ideal sheaves, . Motivated by global geometric issues, we establish an effective version of the coherence property of as . Namely, given any , we estimate the asymptotic growth rate in of the number of generators of over , as well as the growth of the coefficients of sections in with respect to finitely many generators globally defined on . Our approach relies on proving asymptotic integral...
Let be a non-invertible holomorphic endomorphism of a projective space and its iterate of order . We prove that the pull-back by of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to when tends to infinity. We also give an analogous result for the pull-back of positive closed -currents and a similar result for regular polynomial automorphisms of .
Let be compact, convex sets in with and let be a linear, constant coefficient PDO. It is characterized in various ways when each zero solution of in the space of all -functions on extends to a zero solution in resp. in . The most relevant characterizations are in terms of Phragmén-Lindelöf conditions on the zero variety of in and in terms of fundamental solutions for with lacunas.
We study different notions of extremal plurisubharmonic functions.
A plurisubharmonic singularity is extreme if it cannot be represented as the sum of non-homothetic singularities. A complete characterization of such singularities is given for the case of homogeneous singularities (in particular, those determined by generic holomorphic mappings) in terms of decomposability of certain convex sets in ℝⁿ. Another class of extreme singularities is presented by means of a notion of relative type.
Currently displaying 1 –
14 of
14