Parabolic exhaustions for strictly convex domains.
The local Phragmén-Lindelöf condition for analytic varieties in complex n-space was introduced by Hörmander and plays an important role in various areas of analysis. Recently, new necessary geometric properties for a variety satisfying this condition were derived by the present authors. These results are now applied to investigate the homogeneous polynomials P with real coefficients that are stable in the following sense: Whenever f is a holomorphic function that is defined in some neighborhood...
We give an overview of the recent developments in plurifine pluripotential theory, i.e. the theory of plurifinely plurisubharmonic functions.
Let be a bounded hyperconvex domain in and set , j=1,...,s, s ≥ 3. Also let be the image of D under the proper holomorphic map π. We characterize those continuous functions that can be extended to a real-valued pluriharmonic function in .
Poletsky has introduced a notion of plurisubharmonicity for functions defined on compact sets in ℂⁿ. We show that these functions can be completely characterized in terms of monotone convergence of plurisubharmonic functions defined on neighborhoods of the compact.
To a plurisubharmonic function on with logarithmic growth at infinity, we may associate the Robin functiondefined on , the hyperplane at infinity. We study the classes , and (respectively) of plurisubharmonic functions which have the form and (respectively) for which the function is not identically . We obtain an integral formula which connects the Monge-Ampère measure on the space with the Robin function on . As an application we obtain a criterion on the convergence of the Monge-Ampère...
A certain linear growth of the pluricomplex Green function of a bounded convex domain of at a given boundary point is related to the existence of a certain plurisubharmonic function called a “plurisubharmonic saddle”. In view of classical results on the existence of angular derivatives of conformal mappings, for the case of a single complex variable, this allows us to deduce a criterion for the existence of subharmonic saddles.
Let be a complex manifold with strongly pseudoconvex boundary . If is a defining function for , then is plurisubharmonic on a neighborhood of in , and the (real) 2-form is a symplectic structure on the complement of in a neighborhood of in ; it blows up along . The Poisson structure obtained by inverting extends smoothly across and determines a contact structure on which is the same as the one induced by the complex structure. When is compact, the Poisson structure near...
We update the state of the subject approximately 20 years after the publication of T. Bloom, L. Bos, C. Christensen, and N. Levenberg, Polynomial interpolation of holomorphic functions in ℂ and ℂⁿ, Rocky Mountain J. Math. 22 (1992), 441-470. This report is mostly a survey, with a sprinkling of assorted new results throughout.
For μ a positive measure, we estimate the pluricomplex potential of μ, , where g(x,y) is the pluricomplex Green function (relative to Ω) with pole at y.