Displaying 141 – 160 of 234

Showing per page

On the Burns-Epstein invariants of spherical CR 3-manifolds

Khoi The Vu (2011)

Annales de l’institut Fourier

In this paper we develop a method to compute the Burns-Epstein invariant of a spherical CR homology sphere, up to an integer, from its holonomy representation. As an application, we give a formula for the Burns-Epstein invariant, modulo an integer, of a spherical CR structure on a Seifert fibered homology sphere in terms of its holonomy representation.

On the CR-structure of certain linear group orbits in infinite dimensions

Wilhelm Kaup (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits  M explicitly and show as main result that every continuous CR-function on  M has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes to infinite...

On the local meromorphic extension of CR meromorphic mappings

Joël Merker, Egmont Porten (1998)

Annales Polonici Mathematici

Let M be a generic CR submanifold in m + n , m = CR dim M ≥ 1, n = codim M ≥ 1, d = dim M = 2m + n. A CR meromorphic mapping (in the sense of Harvey-Lawson) is a triple ( f , f , [ Γ f ] ) , where: 1) f : f Y is a ¹-smooth mapping defined over a dense open subset f of M with values in a projective manifold Y; 2) the closure Γ f of its graph in m + n × Y defines an oriented scarred ¹-smooth CR manifold of CR dimension m (i.e. CR outside a closed thin set) and 3) d [ Γ f ] = 0 in the sense of currents. We prove that ( f , f , [ Γ f ] ) extends meromorphically to a wedge...

On the nonexistence of CR functions on Levi-flat CR manifolds.

Takashi Inaba (1992)

Collectanea Mathematica

We show that no compact Levi-flat CR manifold of CR codimension one admits a continuous CR function which is nonconstant along leaves of the Levi foliation. We also prove the nonexistence of certain CR functions on a neighborhood of a compact leaf of some Levi-flat CR 3-manifolds, and apply it to showing that some foliated 3-manifolds cannot be embedded as smooth Levi-flat real hypersurfaces in complex surfaces.

On the partial algebraicity of holomorphic mappings between two real algebraic sets

Joël Merker (2001)

Bulletin de la Société Mathématique de France

The rigidity properties of the local invariants of real algebraic Cauchy-Riemann structures imposes upon holomorphic mappings some global rational properties (Poincaré 1907) or more generally algebraic ones (Webster 1977). Our principal goal will be to unify the classical or recent results in the subject, building on a study of the transcendence degree, to discuss also the usual assumption of minimality in the sense of Tumanov, in arbitrary dimension, without rank assumption and for holomorphic...

Currently displaying 141 – 160 of 234