Fibrés normaux d'immersions en dimension double, points doubles d'immersions lagrangiennes et plongements totalement réels.
We define the notion of CR equivalence for Levi-flat foliations and compare in a local setting these foliations to their linear parts. We study also the situation where the foliation has a first integral ; a condition is given so that this integral is the real part of a holomorphic function.
We give a homotopy formula for the operator on a domain with (q+k)-concave boundary. As a consequence we show that the dimension of the -cohomology groups for some CR manifolds q-concave at infinity is finite.
There are only some exceptional CR dimensions and codimensions such that the geometries enjoy a discrete classification of the pointwise types of the homogeneous models. The cases of CR dimensions n and codimensions n 2 are among the very few possibilities of the so-called parabolic geometries. Indeed, the homogeneous model turns out to be PSU(n+1,n)/P with a suitable parabolic subgroup P. We study the geometric properties of such real (2n+n 2)-dimensional submanifolds in for all n > 1. In...