Approximation of by .
In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate -Bernstein polynomials for a function analytic in the polydisc for arbitrary fixed . We give quantitative Voronovskaja type estimates for the bivariate -Bernstein polynomials for . In the univariate case the similar results were obtained by S. Ostrovska: -Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255. and S. G. Gal: Approximation by Complex Bernstein and Convolution...
Nous tentons, dans ce survol, de présenter une structure méconnue : l'algèbre de Lie ARI et son groupe GARI. Puis nous montrons quels progrès elle a déjà permis de réaliser dans l'étude arithmético-algébrique des valeurs zêta multiples et aussi quelles possibilités elle ouvre pour l'exploration du phénomène plus général de /emph{dimorphie numérique}.
A general hypergeometric construction of linear forms in (odd) zeta values is presented. The construction allows to recover the records of Rhin and Viola for the irrationality measures of and , as well as to explain Rivoal’s recent result on infiniteness of irrational numbers in the set of odd zeta values, and to prove that at least one of the four numbers , , , and is irrational.
This is an expository article, based on the talk with the same title, given at the 2011 FASDE II Conference in Będlewo, Poland. In the introduction we define Multiple Zeta Values and certain historical remarks are given. Then we present several results on Multiple Zeta Values and, in particular, we introduce certain meromorphic differential equations associated to their generating function. Finally, we make some conclusive remarks on generalisations of Multiple Zeta Values as well as the meromorphic...
We analyze the Charlier polynomials C n(χ) and their zeros asymptotically as n → ∞. We obtain asymptotic approximations, using the limit relation between the Krawtchouk and Charlier polynomials, involving some special functions. We give numerical examples showing the accuracy of our formulas.
We derive the asymptotic spectral distribution of the distance k-graph of N-dimensional hypercube as N → ∞.