Displaying 181 – 200 of 222

Showing per page

Several q -series identities from the Euler expansions of ( a ; q ) and 1 ( a ; q )

Zhizheng Zhang, Yang, Jizhen (2009)

Archivum Mathematicum

In this paper, we first give several operator identities which extend the results of Chen and Liu, then make use of them to two q -series identities obtained by the Euler expansions of ( a ; q ) and 1 ( a ; q ) . Several q -series identities are obtained involving a q -series identity in Ramanujan’s Lost Notebook.

Some new transformations for Bailey pairs and WP-Bailey pairs

James Mc Laughlin (2010)

Open Mathematics

We derive several new transformations relating WP-Bailey pairs. We also consider the corresponding transformations relating standard Bailey pairs, and as a consequence, derive some quite general expansions for products of theta functions which can also be expressed as certain types of Lambert series.

Systèmes aux q -différences singuliers réguliers : classification, matrice de connexion et monodromie

Jacques Sauloy (2000)

Annales de l'institut Fourier

G.D. Birkhoff a posé, par analogie avec le cas classique des équations différentielles, le problème de Riemann-Hilbert pour les systèmes “fuchsiens” aux q -différences linéaires, à coefficients rationnels. Il l’a résolu dans le cas générique: l’objet classifiant qu’il introduit est constitué de la matrice de connexion P et des exposants en 0 et . Nous reprenons sa méthode dans le cas général, mais en traitant symétriquement 0 et et sans recours à des solutions à croissance “sauvage”. Lorsque q ...

The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials

Tomasz Beberok (2017)

Czechoslovak Mathematical Journal

We investigate the Bergman kernel function for the intersection of two complex ellipsoids { ( z , w 1 , w 2 ) n + 2 : | z 1 | 2 + + | z n | 2 + | w 1 | q < 1 , | z 1 | 2 + + | z n | 2 + | w 2 | r < 1 } . We also compute the kernel function for { ( z 1 , w 1 , w 2 ) 3 : | z 1 | 2 / n + | w 1 | q < 1 , | z 1 | 2 / n + | w 2 | r < 1 } and show deflation type identity between these two domains. Moreover in the case that q = r = 2 we express the Bergman kernel in terms of the Jacobi polynomials. The explicit formulas of the Bergman kernel function for these domains enables us to investigate whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng problem.

Currently displaying 181 – 200 of 222