On the approximate values of an implicitly given function
We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function can be approximated with arbitrary accuracy by an infinite sum of analytic functions , each solving the same system of universal partial differential equations, namely (σ = 1,..., s).
Sufficient conditions are formulated for existence of non-oscillatory solutions to the equation with , real (not necessarily natural) , and continuous functions and defined in a neighborhood of . For this equation with positive potential a criterion is formulated for existence of non-oscillatory solutions with non-zero limit at infinity. In the case of even order, a criterion is obtained for all solutions of this equation at infinity to be oscillatory. Sufficient conditions are obtained...
Mostramos la existencia de dos curvas de datos iniciales (x0, v0) para las cuales las soluciones x(t) correspondientes del problema de Cauchy asociado a la ecuación xtt + |xt|α-1 xt + x = 0, supuesto α ∈ (0,1), se anulan idénticamente después de un tiempo finito. Mediante métodos asintóticos y argumentos de comparación mostramos que para muchos otros datos iniciales las soluciones decaen a 0, en un tiempo infinito, como t-α / (1-α).
The objective of this paper is to study asymptotic properties of the third-order neutral differential equation . We will establish two kinds of sufficient conditions which ensure that either all nonoscillatory solutions of (E) converge to zero or all solutions of (E) are oscillatory. Some examples are considered to illustrate the main results.